Time-Trial Performance in World-Class Speed Skaters After Chronic Nitrate Ingestion

2018 ◽  
Vol 13 (10) ◽  
pp. 1317-1323 ◽  
Author(s):  
Philippe Richard ◽  
Lymperis P. Koziris ◽  
Mathieu Charbonneau ◽  
Catherine Naulleau ◽  
Jonathan Tremblay ◽  
...  

Purpose: Nitrate supplementation can increase tolerance to high-intensity work rates; however, limited data exist on the recovery of performance. The authors tested whether 5 d of nitrate supplementation could improve repeated time-trial performance in speed skating. Methods: Using a double-blind, placebo-controlled, crossover design, 9 international-level short-track speed skaters ingested 1 high (juice blend, ∼6.5 mmol nitrate; HI) or low dose (juice blend, ∼1 mmol nitrate; LO) per day on days 1–4. After a double dose of either HI or LO on day 5, athletes performed 2 on-ice 1000-m time trials, separated by 35 min, to simulate competition races. Differences between HI and LO were compared with the smallest practically important difference. Results: Salivary [nitrate] and [nitrite] were higher in HI than LO before the first (nitrate: 81%, effect size [ES]: 1.76; nitrite: 72%, ES: 1.73) and second pursuits (nitrate: 81%, ES: 1.92; nitrite: 71%, ES: 1.78). However, there was no difference in performance in the first (LO: 90.92 [4.08] s; HI: 90.95 [4.06] s, ES: 0.01) or the second time trial (LO: 91.16 [4.06] s; HI: 91.55 [4.40] s, ES: 0.09). Plasma [lactate] measured after the trials (LO: 14.8 [1.1] mM; HI: 14.8 [1.2] mM, ES: 0.01) and at the end of the recovery period (LO: 9.8 [2.1] mM; HI: 10.2 [1.9] mM, ES: 0.05) was not different between treatments. Conclusion: Five days of high-dose nitrate supplementation did not change physiological responses and failed to improve single and repeated time-trial performances in world-class short-track speed skaters. These data suggest that nitrate ingestion up to 6.5 mmol does not enhance recovery from supramaximal exercise in world-class athletes.

Author(s):  
Naomi M. Cermak ◽  
Martin J. Gibala ◽  
Luc J.C. van Loon

Six days of dietary nitrate supplementation in the form of beetroot juice (~0.5 L/d) has been reported to reduce pulmonary oxygen uptake (VO2) during submaximal exercise and increase tolerance of high-intensity work rates, suggesting that nitrate can be a potent ergogenic aid. Limited data are available regarding the effect of nitrate ingestion on athletic performance, and no study has investigated the potential ergogenic effects of a small-volume, concentrated dose of beetroot juice. The authors tested the hypothesis that 6 d of nitrate ingestion would improve time-trial performance in trained cyclists. Using a double-blind, repeated-measures crossover design, 12 male cyclists (31 ± 3 yr, VO2peak = 58 ± 2 ml · kg−1 · min−1, maximal power [Wmax] = 342 ± 10 W) ingested 140 ml/d of concentrated beetroot (~8 mmol/d nitrate) juice (BEET) or a placebo (nitrate-depleted beetroot juice; PLAC) for 6 d, separated by a 14-d washout. After supplementation on Day 6, subjects performed 60 min of submaximal cycling (2 × 30 min at 45% and 65% Wmax, respectively), followed by a 10-km time trial. Time-trial performance (953 ± 18 vs. 965 ± 18 s, p < .005) and power output (294 ± 12 vs. 288 ± 12 W, p < .05) improved after BEET compared with PLAC supplementation. Submaximal VO2 was lower after BEET (45% Wmax = 1.92 ± 0.06 vs. 2.02 ± 0.09 L/min, 65% Wmax 2.94 ± 0.12 vs. 3.11 ± 0.12 L/min) than with PLAC (main effect, p < .05). Wholebody fuel selection and plasma lactate, glucose, and insulin concentrations did not differ between treatments. Six days of nitrate supplementation reduced VO2 during submaximal exercise and improved time-trial performance in trained cyclists.


Author(s):  
Jean M. Nyakayiru ◽  
Kristin L. Jonvik ◽  
Philippe J.M. Pinckaers ◽  
Joan Senden ◽  
Luc J.C. van Loon ◽  
...  

While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O2) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O2peak 65 ± 4 ml·kg-1·min-1, Wmax 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% Wmax and 30 min at 65% Wmax on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].


Author(s):  
Hilkka Kontro ◽  
Marta Kozior ◽  
Gráinne Whelehan ◽  
Miryam Amigo-Benavent ◽  
Catherine Norton ◽  
...  

Supplementing postexercise carbohydrate (CHO) intake with protein has been suggested to enhance recovery from endurance exercise. The aim of this study was to investigate whether adding protein to the recovery drink can improve 24-hr recovery when CHO intake is suboptimal. In a double-blind crossover design, 12 trained men performed three 2-day trials consisting of constant-load exercise to reduce glycogen on Day 1, followed by ingestion of a CHO drink (1.2 g·kg−1·2 hr−1) either without or with added whey protein concentrate (CHO + PRO) or whey protein hydrolysate (CHO + PROH) (0.3 g·kg−1·2 hr−1). Arterialized blood glucose and insulin responses were analyzed for 2 hr postingestion. Time-trial performance was measured the next day after another bout of glycogen-reducing exercise. The 30-min time-trial performance did not differ between the three trials (M ± SD, 401 ± 75, 411 ± 80, 404 ± 58 kJ in CHO, CHO + PRO, and CHO + PROH, respectively, p = .83). No significant differences were found in glucose disposal (area under the curve [AUC]) between the postexercise conditions (364 ± 107, 341 ± 76, and 330 ± 147, mmol·L−1·2 hr−1, respectively). Insulin AUC was lower in CHO (18.1 ± 7.7 nmol·L−1·2 hr−1) compared with CHO + PRO and CHO + PROH (24.6 ± 12.4 vs. 24.5 ± 10.6, p = .036 and .015). No difference in insulin AUC was found between CHO + PRO and CHO + PROH. Despite a higher acute insulin response, adding protein to a CHO-based recovery drink after a prolonged, high-intensity exercise bout did not change next-day exercise capacity when overall 24-hr macronutrient and caloric intake was controlled.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 854
Author(s):  
Chris Easton ◽  
Dylan Merkett ◽  
Chelsea Stock ◽  
Fergal Grace

Author(s):  
Adam U. Upshaw ◽  
Tiffany S. Wong ◽  
Arash Bandegan ◽  
Peter W.R. Lemon

Postexercise chocolate milk ingestion has been shown to enhance both glycogen resynthesis and subsequent exercise performance. To assess whether nondairy chocolate beverage ingestion post–glycogen-lowering exercise can enhance 20-km cycling time trial performance 4 hr later, eight healthy trained male cyclists (21.8 ± 2.3y, VO2max = 61.2 ± 1.4 ml·kg-1·min-1; M ± SD) completed a series of intense cycling intervals designed to lower muscle glycogen (Jentjens & Jeukendrup, 2003) followed by 4 hr of recovery and a subsequent 20-km cycling time trial. During the first 2 hr of recovery, participants ingested chocolate dairy milk (DAIRYCHOC), chocolate soy beverage (SOYCHOC), chocolate hemp beverage (HEMPCHOC), low-fat dairy milk (MILK), or a low-energy artificially sweetened, flavored beverage (PLACEBO) at 30-min intervals in a double-blind, counterbalanced repeated-measures design. All drinks, except the PLACEBO (247 kJ) were isoenergetic (2,107 kJ), and all chocolate-flavored drinks provided 1-g CHO·kg body mass-1·h-1. Fluid intake across treatments was equalized (2,262 ± 148 ml) by ingesting appropriate quantities of water based on drink intake. The CHO:PRO ratio was 4:1, 1.5:1, 4:1, and 6:1 for DAIRYCHOC, MILK, SOYCHOC, and HEMPCHOC, respectively. One-way analysis of variance with repeated measures showed time trial performance (DAIRYCHOC = 34.58 ± 2.5 min, SOYCHOC = 34.83 ± 2.2 min, HEMPCHOC = 34.88 ± 1.1 min, MILK = 34.47 ± 1.7 min) was enhanced similarly vs PLACEBO (37.85 ± 2.1) for all treatments (p = .019) These data suggest that postexercise macronutrient and total energy intake are more important for same-day 20-km cycling time trial performance after glycogen-lowering exercise than protein type or protein-to-carbohydrate ratio.


2011 ◽  
Vol 43 (6) ◽  
pp. 1125-1131 ◽  
Author(s):  
KATHERINE E. LANSLEY ◽  
PAUL G. WINYARD ◽  
STEPHEN J. BAILEY ◽  
ANNI VANHATALO ◽  
DARYL P. WILKERSON ◽  
...  

2019 ◽  
Vol 22 (7) ◽  
pp. 852-857 ◽  
Author(s):  
Luke C. McIlvenna ◽  
David J. Muggeridge ◽  
Laura J. Forrest (Nee Whyte) ◽  
Chris Monaghan ◽  
Luke Liddle ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 657 ◽  
Author(s):  
Alexandre Marques ◽  
Alison Jesus ◽  
Bruna Giglio ◽  
Ana Marini ◽  
Patrícia Lobo ◽  
...  

2010 ◽  
Vol 80 (1) ◽  
pp. 54-64 ◽  
Author(s):  
Philipp Eichenberger ◽  
Samuel Mettler ◽  
Myrtha Arnold ◽  
Paolo C. Colombani

The purpose of this study was to examine the effects of three-week consumption of green tea extract (GTE) supplementation on time trial performance and metabolism during cycling in endurance athletes. Nine endurance-trained men participated in this double-blind and placebo-controlled cross-over study. At the end of the supplementation period with GTE (159 mg/day total catechins) or placebo, respectively, subjects cycled at 50 % of the individual maximal power output for 2 hours, followed by a 30-minute time trial. Respiratory gas exchange, fatty acids, 3-β-hydroxybutyrate, lactate, glucose, interleukin-6, thiobarbituric acid reactive substances, creatine kinase, and C-reactive protein (CRP) were measured 1 hour before, during, and 1 hour after the exercise test. Blood lipids were measured at rest before cycling. There was no significant effect on performance, energy metabolism, or any other measured parameter, except for CRP, which was significantly reduced (p = 0.045) after GTE supplementation compared to placebo. GTE supplementation did not affect time trial performance and energy metabolism in endurance-trained men in the non-fasting state. Further studies with athletes, particularly in the fed state, but with higher GTE doses, are needed to address the question whether green tea may influence energy metabolism and performance in athletes.


Author(s):  
John L. Ivy ◽  
Lynne Kammer ◽  
Zhenping Ding ◽  
Bei Wang ◽  
Jeffrey R. Bernard ◽  
...  

Context:Not all athletic competitions lend themselves to supplementation during the actual event, underscoring the importance of preexercise supplementation to extend endurance and improve exercise performance. Energy drinks are composed of ingredients that have been found to increase endurance and improve physical performance.Purpose:The purpose of the study was to investigate the effects of a commercially available energy drink, ingested before exercise, on endurance performance.Methods:The study was a double-blind, randomized, crossover design. After a 12-hr fast, 6 male and 6 female trained cyclists (mean age 27.3 ± 1.7 yr, mass 68.9 ± 3.2 kg, and VO2 54.9 ± 2.3 ml · kg–1 · min–1) consumed 500 ml of either flavored placebo or Red Bull Energy Drink (ED; 2.0 g taurine, 1.2 g glucuronolactone, 160 mg caffeine, 54 g carbohydrate, 40 mg niacin, 10 mg pantothenic acid, 10 mg vitamin B6, and 10 μg vitamin B12) 40 min before a simulated cycling time trial. Performance was measured as time to complete a standardized amount of work equal to 1 hr of cycling at 70% Wmax.Results:Performance improved with ED compared with placebo (3,690 ± 64 s vs. 3,874 ± 93 s, p < .01), but there was no difference in rating of perceived exertion between treatments. β-Endorphin levels increased during exercise, with the increase for ED approaching significance over placebo (p = .10). Substrate utilization, as measured by open-circuit spirometry, did not differ between treatments.Conclusion:These results demonstrate that consuming a commercially available ED before exercise can improve endurance performance and that this improvement might be in part the result of increased effort without a concomitant increase in perceived exertion.


Sign in / Sign up

Export Citation Format

Share Document