Divergent Performance Outcomes Following Resistance Training Using Repetition Maximums or Relative Intensity

2019 ◽  
Vol 14 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Kevin M. Carroll ◽  
Jake R. Bernards ◽  
Caleb D. Bazyler ◽  
Christopher B. Taber ◽  
Charles A. Stuart ◽  
...  

Purpose: To compare repetition maximum (RM) to relative intensity using sets and repetitions (RISR) resistance training on measures of training load, vertical jump, and force production in well-trained lifters. Methods: Fifteen well-trained (isometric peak force = 4403.61 [664.69] N, mean [SD]) males underwent resistance training 3 d/wk for 10 wk in either an RM group (n = 8) or RISR group (n = 7). Weeks 8 to 10 consisted of a tapering period for both groups. The RM group achieved a relative maximum each day, whereas the RISR group trained based on percentages. Testing at 5 time points included unweighted (<1 kg) and 20-kg squat jumps, countermovement jumps, and isometric midthigh pulls. Mixed-design analyses of variance and effect size using Hedge’s g were used to assess within- and between-groups alterations. Results: Moderate between-groups effect sizes were observed for all squat-jump and countermovement-jump conditions supporting the RISR group (g = 0.76–1.07). A small between-groups effect size supported RISR for allometrically scaled isometric peak force (g = 0.20). Large and moderate between-groups effect sizes supported RISR for rate of force development from 0 to 50 ms (g = 1.25) and 0 to 100 ms (g = 0.89). Weekly volume load displacement was not different between groups (P > .05); however, training strain was statistically greater in the RM group (P < .05). Conclusions: Overall, this study demonstrated that RISR training yielded greater improvements in vertical jump, rate of force development, and maximal strength compared with RM training, which may be explained partly by differences in the imposed training stress and the use of failure/nonfailure training in a well-trained population.

2015 ◽  
Vol 50 (1) ◽  
pp. 14-22 ◽  
Author(s):  
Roger Kollock ◽  
Bonnie L. Van Lunen ◽  
Stacie I. Ringleb ◽  
James A. Oñate

Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.


2015 ◽  
Vol 46 (1) ◽  
pp. 139-148 ◽  
Author(s):  
María Asunción Martínez-Valencia ◽  
Salvador Romero-Arenas ◽  
José L.L. Elvira ◽  
José María González-Ravé ◽  
Fernando Navarro-Valdivielso ◽  
...  

AbstractResisted sprint training is believed to increase strength specific to sprinting. Therefore, the knowledge of force output in these tasks is essential. The aim of this study was to analyze the effect of sled towing (10%, 15% and 20% of body mass (Bm)) on sprint performance and force production during the acceleration phase. Twenty-three young experienced sprinters (17 men and 6 women; men = 17.9 ± 3.3 years, 1.79 ± 0.06 m and 69.4 ± 6.1 kg; women = 17.2 ± 1.7 years, 1.65 ± 0.04 m and 56.6 ± 2.3 kg) performed four 30 m sprints from a crouch start. Sprint times in 20 and 30 m sprint, peak force (Fpeak), a peak rate of force development (RFDpeak) and time to RFD (TRFD) in first step were recorded. Repeated-measures ANOVA showed significant increases (p ≤ 0.001) in sprint times (20 and 30 m sprint) for each resisted condition as compared to the unloaded condition. The RFDpeak increased significantly when a load increased (3129.4 ± 894.6 N·s−1, p ≤ 0.05 and 3892.4 ± 1377.9 N·s−1, p ≤ 0.01). Otherwise, no significant increases were found in Fpeak and TRFD. The RFD determines the force that can be generated in the early phase of muscle contraction, and it has been considered a factor that influences performance of force-velocity tasks. The use of a load up to 20% Bm might provide a training stimulus in young sprinters to improve the RFDpeak during the sprint start, and thus, early acceleration.


Author(s):  
Paulo Henrique Silva Pelicioni ◽  
Marcelo Pinto Pereira ◽  
Juliana Lahr ◽  
Paulo Cezar Rocha dos Santos ◽  
Lilian Teresa Bucken Gobbi

Muscle weakness is a secondary motor symptom of Parkinson’s disease (PD), especially in the subtype characterized by postural instability and gait difficulty (PIGD). Since the PIGD subtype also presents worse bradykinesia, we hypothesized that it also shows a decreased rate of force development, which is linked to an increased risk of falling in PD. Therefore, we investigated the effects of PD and PD subtypes on a force production profile and correlated the force production outcomes with clinical symptoms for each PD subtype. We assessed three groups of participants: 14 healthy older adults (OA), 10 people with PD composing the PIGD group, and 14 people with PD composing the tremor-dominant group. Three knee extension maximum voluntary isometric contractions were performed in a leg extension machine equipped with a load cell to assess the force production. The outcome measures were: peak force and rate of force development (RFD) at 50 ms (RFD50), 100 ms (RFD100), and 200 ms (RFD200). We observed lower peak force, RFD50, RFD100, and RFD200 in people with PD, regardless of subtypes, compared with the OA group (p < 0.05 for all comparisons). Together, our results indicated that PD affects the capacity to produce maximal and rapid force. Therefore, future interventions should consider rehabilitation programs for people with PD based on muscle power and fast-force production, and consequently reduce the likelihood of people with PD falling from balance-related events, such as from an unsuccessful attempt to avoid a tripping hazard or a poor and slower stepping response.


Author(s):  
Carlos Rodriguez-Lopez ◽  
Julian Alcazar ◽  
Jose Losa-Reyna ◽  
JuanManuel Carmona-Torres ◽  
Aurora Maria Cruz-Santaella ◽  
...  

AbstractThis study investigated the acute responses to volume-load-matched heavy-load (80% 1RM) versus light-load (40% 1RM) power-oriented resistance training sessions in well-functioning older adults. Using a randomized cross-over design, 15 volunteers completed each condition on a leg press. Neuromuscular (maximal isometric force and rate of force development) and functional performance (power during sit-to-stand test), lactate, and muscle damage biochemistry (creatine kinase, lactate dehydrogenase and C-reactive protein serum concentration) were assessed pre- and post-exercise. Performance declines were found after heavy-load (Cohen’s d effect size (d); maximal isometric force=0.95 d; rate of force development=1.17 d; sit-to-stand power =0.38 d, all p<0.05) and light-load (maximal isometric force=0.45 d; rate of force development=0.9 d; sit-to-stand power=1.17 d, all p<0.05), while lactate concentration increased only after light-load (1.7 d, p=0.001). However, no differences were found between conditions (all p>0.05). Both conditions increased creatine kinase the day after exercise (marginal effect=0.75 d, p<0.001), but no other blood markers increased (all, p>0.05). Irrespective of the load used, power training induced non-clinically significant decreases in sit-to-stand performance, moderate declines in maximal isometric force, but pronounced decreases in the rate of force development. Furthermore, the metabolic stress and muscle damage were minor; both sessions were generally well tolerated by well-functioning older adults without previous experience in resistance training.


2014 ◽  
Vol 30 (6) ◽  
pp. 679-684 ◽  
Author(s):  
Pablo Floria ◽  
Luis A. Gómez-Landero ◽  
Andrew J. Harrison

The purpose of this study was to determine if children exhibit greater variability in center of mass movement and kinetics compared with adults in vertical jumping. Countermovement jumps with arms (CMJA) and without arms (CMJ) performed by 20 female children and 20 female adults were examined using force platform. The data were analyzed using continuous methods to determine differences in variability between groups and between types of jump. Jumping variability was measured by using the average coefficient of variation of the force-, velocity-, displacement-, and rate of force development-time curves across the jump. The analysis indicated that children and adults had similar levels of variability in the CMJ but different levels in the CMJA. In the CMJA, the children had a greater coefficient of variation than adults in force- (20 ± 7% and 12 ± 6%), velocity- (41 ± 14% and 22 ± 9%), displacement- (8 ± 16% and 23 ± 11%) and rate of force development-time (103 ± 46% and 75 ± 42%) curves, as well as in force-velocity relationship (6 ± 2% and 4 ± 2%). The results of analysis suggest that the variability depends on both the level of maturation of the participants as well as the task complexity.


2019 ◽  
Vol 13 (1) ◽  
pp. 155798831982862 ◽  
Author(s):  
Erika Zemková ◽  
Oliver Poór ◽  
Juraj Pecho

This study investigates the relationship between peak force and rate of force development (RFD) obtained from maximal voluntary isometric contraction (MVC) of the back muscles and the power produced during a loaded lifting task. A group of 27 resistance-trained and 41 recreationally physically active men performed a maximal isometric strength test of the back muscles and a deadlift to high pull while lifting progressively increasing weights. Peak RFD correlated significantly with the peak and mean power produced during a deadlift to high pull with lower weights (from 20 to 40 kg), with r values ranging from .941 to .673 and from .922 to .633. The r2 values ranged from .89 to .45 and from .85 to .40, explaining 89%–45% and 85%–40% of total variance. There were also significant relationships between MVC peak force and peak and mean values of power produced during a deadlift to high pull with weights ≥60 kg ( r in range from .764 to .888 and from .735 to .896). Based on r2, a moderate-to-high proportion of variance was explained (58%–79% and 54%–80%). These findings indicate that peak RFD obtained from MVC of the back muscles may be predictive of power performance during a lifting task at light loads. In addition to MVC peak force produced by back muscles, the ability of subjects to develop a high force in a short time should be evaluated in order to gain deeper insight into a loaded lifting performance, namely, in those prone to low back pain.


2016 ◽  
Vol 30 (10) ◽  
pp. 2749-2760 ◽  
Author(s):  
Henrik Kirk ◽  
Svend S. Geertsen ◽  
Jakob Lorentzen ◽  
Kasper B. Krarup ◽  
Thomas Bandholm ◽  
...  

2017 ◽  
Vol 22 (2) ◽  
pp. 48-59
Author(s):  
Roger O. Kollock ◽  
Bonnie Van Lunen ◽  
Stacie I. Ringleb ◽  
James Onate

The ability to produce force rapidly and to maintain it is essential to sports performance. Although rapid force production and endurance are indispensable characteristics of optimal health and performance, assessing these qualities of strength is difficult because of clinician time constraints. The purpose of this study was to determine if peak force is a predictor of rate of force production and strength endurance. The results indicated peak force is a predictor of rate of force development, but not strength endurance. Clinicians should assess both maximum strength and endurance to gain a more complete picture of lower extremity strength deficits.


Sign in / Sign up

Export Citation Format

Share Document