scholarly journals Morning Preconditioning Exercise Does Not Increase Afternoon Performance in Competitive Runners

Author(s):  
Even Brøndbo Dahl ◽  
Eivind Øygard ◽  
Gøran Paulsen ◽  
Bjarne Rud ◽  
Thomas Losnegard

Purpose: Preconditioning exercise is a widely used strategy believed to enhance performance later the same day. The authors examined the influence of preconditioning exercises 6 hours prior to a time-to-exhaustion (TTE) test during treadmill running. Methods: Ten male competitive runners (age = 26 [3] y, height = 184 [8] cm, weight = 73 [9] kg, maximum oxygen consumption = 72 [7] mL·kg−1·min−1) did a preconditioning session of running (RUN) or resistance exercise (RES) or no morning exercise (NoEx) in a randomized order, separated by >72 hours. The RUN consisted of 15 minutes of low-intensity running and 4 × 15 seconds at race pace (21–24 km·h−1) on a treadmill; RES involved 5 minutes of low-intensity running and 2 × 3 repetitions of isokinetic 1-leg shallow squats with maximal mobilization. Following a 6-hour break, electrically evoked force (m. vastus medialis), countermovement jump, running economy, and a TTE of approximately 2 minutes were examined. Results: Relative to NoEx, no difference was seen for RUN or RES in TTE (mean ± 95% CI: −1.3% ± 3.4% and −0.5% ± 6.0%) or running economy (0.2% ± 1.6% and 1.9% ± 2.7%; all Ps > .05). Jump height was not different for the RUN condition (1.0% ± 2.7%]) but tended to be higher in RES than in the NoEx condition (1.5% ± 1.6%, P = .07). The electrically evoked force tended to reveal low-frequency fatigue (reduced 20:50-Hz peak force ratio) only after RES compared to NoEx (−4.5% ± 4.6%, P = .06). Conclusion: The RUN or RES 6 hours prior to approximately 2 minutes of TTE running test did not improve performance in competitive runners.

2017 ◽  
Vol 122 (1) ◽  
pp. 48-59 ◽  
Author(s):  
Casper Skovgaard ◽  
Nicki Winfield Almquist ◽  
Jens Bangsbo

The aim of the study was, in runners accustomed to speed endurance training (SET), to examine the effect of increased and maintained frequency of SET on performance and muscular adaptations. After familiarization (FAM) to SET, 18 male ( n = 14) and female ( n = 4) runners (V̇o2max: 57.3 ± 3.4 ml/min; means ± SD) completed 20 sessions of maintained low-frequency (LF; every fourth day; n = 7) or high-frequency (HF; every second day; n = 11) SET. Before FAM as well as before and after an intervention period (INT), subjects completed a series of running tests and a biopsy from m. vastus lateralis was collected. Ten-kilometer performance improved ( P < 0.05) ~3.5% during FAM with no further change during INT. Time to exhaustion at 90% vV̇o2max was 15 and 22% longer ( P < 0.05) during FAM and a further 12 and 16% longer ( P < 0.05) during INT in HF and LF, respectively. During FAM, muscle expression of NHE1 and maximal activity of citrate synthase (CS) and phosphofructokinase (PFK) increased ( P < 0.05), running economy (RE) improved ( P < 0.05), and V̇o2max was unchanged. During INT, both HF and LF increased ( P < 0.05) muscle expression of NKAβ1, whereas maximal activity of CS and PFK, RE, and V̇o2max were unchanged. Furthermore, during INT, muscle expression of FXYD1 and SERCA1, and FXYD1 activity increased ( P < 0.05) in HF, while muscle expression of SERCA2 decreased ( P < 0.05) in LF. Thus increased or maintained frequency of SET leads to further improvements in short-term exercise capacity, but not in 10-km running performance. The better short-term exercise capacity may be associated with elevated expression of muscle proteins related to Na+/K+ transportation and Ca2+ reuptake. NEW & NOTEWORTHY Ten speed endurance training (SET) sessions improved short-term exercise capacity and 10-km performance, which was followed by further improved short-term exercise capacity, but unchanged 10-km performance after 20 SET sessions performed with either high frequency (4 per 8 days) or continued low frequency (2 per 8 days) in trained runners. The further gain in short-term exercise capacity was associated with changes in muscle expression of proteins of importance for the development of fatigue.


1988 ◽  
Vol 64 (3) ◽  
pp. 1098-1106 ◽  
Author(s):  
E. M. Gorostiaga ◽  
S. M. Czerwinski ◽  
R. C. Hickson

This study was undertaken to determine the effects of increased substrate availability (glycogen + plasma fatty acids) by glucocorticoids on energy metabolism during exercise to exhaustion. Female rats received a single subcutaneous injection of cortisol acetate (CA) (100 mg.kg body wt-1) 21 h before treadmill running (30.8 m/min). At the start of exercise in the CA-treated rats, plasma fatty acids and liver glycogen were increased by 40%. Glycogen levels were also increased by CA treatment in slow-twitch soleus (61%), fast-twitch white vastus (38%), and fast-twitch red vastus lateralis (85%) muscles. Exercise time to exhaustion was increased by CA treatment (114 ± 5 vs. 95 ± 6 min, P less than 0.05). During the exercise, total glycogen depletion was greater in the CA-treated than in the control animals, whereas estimated relative rates of carbohydrate utilization (R = 0.90) were similar. However, while running the CA-treated group consumed 11% more O2 than the controls (P less than 0.05). These results show that a single injection of glucocorticoids is capable of improving endurance. Yet the increased O2 uptake during exercise may have minimized the impact of the initial increased availability of carbohydrates and fatty acids in prolonging exercise capacity. This decreased running economy by the CA-treated runners may be secondary to alterations in energy production or utilization.


2007 ◽  
Vol 103 (3) ◽  
pp. 828-834 ◽  
Author(s):  
Mituso Neya ◽  
Taisuke Enoki ◽  
Yasuko Kumai ◽  
Takayuki Sugoh ◽  
Takashi Kawahara

We investigated the effects of nightly intermittent exposure to hypoxia and of training during intermittent hypoxia on both erythropoiesis and running economy (RE), which is indicated by the oxygen cost during running at submaximal speeds. Twenty-five college long- and middle- distance runners [maximal oxygen uptake (V̇o2max) 60.3 ± 4.7 ml·kg−1·min−1] were randomly assigned to one of three groups: hypoxic residential group (HypR, 11 h/night at 3,000 m simulated altitude), hypoxic training group (HypT), or control group (Con), for an intervention of 29 nights. All subjects trained in Tokyo (altitude of 60 m) but HypT had additional high-intensity treadmill running for 30 min at 3,000 m simulated altitude on 12 days during the night intervention. V̇o2 was measured at standing rest during four submaximal speeds (12, 14, 16, and 18 km/h) and during a maximal stage to volitional exhaustion on a treadmill. Total hemoglobin mass (THb) was measured by carbon monoxide rebreathing. There were no significant changes in V̇o2max, THb, and the time to exhaustion in all three groups after the intervention. Nevertheless, HypR showed ∼5% improvement of RE in normoxia ( P < 0.01) after the intervention, reflected by reduced V̇o2 at 18 km/h and the decreased regression slope fitted to V̇o2 measured during rest position and the four submaximal speeds ( P < 0.05), whereas no significant corresponding changes were found in HypT and Con. We concluded that our dose of intermittent hypoxia (3,000 m for ∼11 h/night for 29 nights) was insufficient to enhance erythropoiesis or V̇o2max, but improved the RE at race speed of college runners.


2014 ◽  
Vol 117 (12) ◽  
pp. 1451-1459 ◽  
Author(s):  
Jovana Smoljanić ◽  
Nathan B. Morris ◽  
Sheila Dervis ◽  
Ollie Jay

We sought to determine the independent influence of running economy (RE) and aerobic fitness [maximum oxygen consumption (V̇o2max)] on thermoregulatory responses during treadmill running by conducting two studies. In study 1, seven high (HI-FIT: 61 ± 5 ml O2·kg−1·min−1) and seven low (LO-FIT: 45 ± 4 ml O2·kg−1·min−1) V̇o2max males matched for physical characteristics and RE (HI-FIT: 200 ± 21; LO-FIT: 200 ± 18 ml O2·kg−1·km−1) ran for 60 min at 1) 60%V̇o2max and 2) a fixed metabolic heat production (Hprod) of 640 W. In study 2, seven high (HI-ECO: 189 ± 15.3 ml O2·kg−1·km−1) and seven low (LO-ECO: 222 ± 10 ml O2·kg−1·km−1) RE males matched for physical characteristics and V̇o2max (HI-ECO: 60 ± 3; LO-ECO: 61 ± 7 ml O2·kg−1·min−1) ran for 60 min at a fixed 1) speed of 10.5 km/h and 2) Hprod of 640 W. Environmental conditions were 25.4 ± 0.8°C, 37 ± 12% RH. In study 1, at Hprod of 640 W, similar changes in esophageal temperature (ΔTes; HI-FIT: 0.63 ± 0.20; LO-FIT: 0.63 ± 0.22°C; P = 0.986) and whole body sweat losses (WBSL; HI-FIT: 498 ± 66; LO-FIT: 497 ± 149 g; P = 0.984) occurred despite different relative intensities (HI-FIT: 55 ± 6; LO-FIT: 39 ± 2% V̇o2max; P < 0.001). At 60% V̇o2max, ΔTes ( P = 0.029) and WBSL ( P = 0.003) were greater in HI-FIT (1.14 ± 0.32°C; 858 ± 130 g) compared with LO-FIT (0.73 ± 0.34°C; 609 ± 123 g), as was Hprod (HI-FIT: 12.6 ± 0.9; LO-FIT: 9.4 ± 1.0 W/kg; P < 0.001) and the evaporative heat balance requirement (Ereq; HI-FIT: 691 ± 74; LO-FIT: 523 ± 65 W; P < 0.001). Similar sweating onset ΔTes and thermosensitivities occurred between V̇o2max groups. In study 2, at 10.5 km/h, ΔTes (1.16 ± 0.31 vs. 0.78 ± 0.28°C; P = 0.017) and WBSL (835 ± 73 vs. 667 ± 139 g; P = 0.015) were greater in LO-ECO, as was Hprod (13.5 ± 0.6 vs. 11.3 ± 0.8 W/kg; P < 0.001) and Ereq (741 ± 89 vs. 532 ± 130 W; P = 0.007). At Hprod of 640 W, ΔTes ( P = 0.910) and WBSL ( P = 0.710) were similar between HI-ECO (0.55 ± 0.31°C; 501 ± 88 g) and LO-ECO (0.57 ± 0.16°C; 483 ± 88 g), but running speed was different (HI-ECO: 8.2 ± 0.6; LO-ECO: 7.2 ± 0.4 km/h; P = 0.025). In conclusion, thermoregulatory responses during treadmill running are not altered by V̇o2max, but by RE because of differences in Hprod and Ereq.


1994 ◽  
Vol 10 (4-5) ◽  
pp. 633-643
Author(s):  
Gary E. Schwartz ◽  
Iris R. Bell ◽  
Ziya V. Dikman ◽  
Mercedes Fernandez ◽  
John P. Kline ◽  
...  

Recent studies from the University of Arizona indicate that normal subjects, both college students and the elderly, can register the presence of low-intensity odors in the electroencephalogram (EEG) in the absence of conscious awareness of the odors. The experimental paradigm involves subjects sniffing pairs of bottles, one containing an odorant (e.g. isoamyl acetate) dissolved in an odorless solvent (water or liquid silicone), the other containing just the solvent, while 19 channels of EEG are continuously recorded. For the low-intensity odor conditions, concentrations are adjusted downward (decreased) until subjects correctly identify the odor bottle at chance (50). The order of odorants, concentrations, and hand holding the control bottle, are counterbalanced within and across subjects. Three previous experiments found that alpha activity (8-12 hz) decreased in midline and posterior regions when subjects sniffed the low-intensity odors. The most recent study suggests that decreased theta activity (4-8 hz) may reflect sensory registration and decreased alpha activity may reflect perceptual registration. In a just completed experiment involving college students who were selected based on combinations of high and low scores on a scale measuring cacosmia (chemical odor intolerance) and high and low scores on a scale measuring depression, cacosmic subjects (independent of depression) showed greater decreases in low-frequency alpha (8-10 hz) and greater increases in low-frequency beta (12-16 hz) to the solvent propylene glycol compared to an empty bottle. Topographic EEG mapping to low-intensity odorants may provide a useful tool for investigating possible increased sensitivity to specific chemicals in chemically sensitive individuals.


1998 ◽  
Vol 23 (3) ◽  
pp. 261-270 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Jean Lambert ◽  
Kevin Scott

Training with voluntary or electromyostimulation (EMS)-evoked eccentric contractions should produce complete muscle activation, since EMS and eccentric contractions preferentially recruit large motor units. Subjects (22 women ages 18-40) were randomly assigned to a voluntary (VOL; n = 8), EMS (n = 8), or control group. VOL and EMS groups trained the quadriceps at the same, increasing force levels 4 times/week for 6 weeks using voluntary or EMS-evoked eccentric contractions. VOL improved voluntary more than EMS-evoked eccentric strength. EMS improved EMS-evoked strength more than voluntary. EMS training improved EMS-evoked eccentric strength more than VOL training improved voluntary eccentric strength. EMS-evoked to voluntary force ratio increased from 0.57 (±0.11) to 1.20 (±0.35) in EMS and did not change in VOL (all changes p < .05). Six of eight EMS subjects produced greater EMS-evoked force posttraining, suggesting incomplete muscle activation after EMS training. Key words: exercise, eccentric contraction, muscle activation


1999 ◽  
Vol 86 (4) ◽  
pp. 1337-1346 ◽  
Author(s):  
Stuart A. Binder-Macleod ◽  
David W. Russ

No comparison of the amount of low-frequency fatigue (LFF) produced by different activation frequencies exists, although frequencies ranging from 10 to 100 Hz have been used to induce LFF. The quadriceps femoris of 11 healthy subjects were tested in 5 separate sessions. In each session, the force-generating ability of the muscle was tested before and after fatigue and at 2, ∼13, and ∼38 min of recovery. Brief (6-pulse), constant-frequency trains of 9.1, 14.3, 33.3, and 100 Hz and a 6-pulse, variable-frequency train with a mean frequency of 14.3 Hz were delivered at 1 train/s to induce fatigue. Immediately postfatigue, there was a significant effect of fatiguing protocol frequency. Muscles exhibited greater LFF after stimulation with the 9.1-, 14.3-, and variable-frequency trains. These three trains also produced the greatest mean force-time integrals during the fatigue test. At 2, ∼13, and ∼38 min of recovery, however, the LFF produced was independent of the fatiguing protocol frequency. The findings are consistent with theories suggesting two independent mechanisms behind LFF and may help identify the optimal activation pattern when functional electrical stimulation is used.


Sign in / Sign up

Export Citation Format

Share Document