scholarly journals Complex Interplay Between Determinants of Pacing and Performance During 20-km Cycle Time Trials

2012 ◽  
Vol 7 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Andrew Renfree ◽  
Julia West ◽  
Mark Corbett ◽  
Clare Rhoden ◽  
Alan St Clair Gibson

Purpose:This study examined the determinants of pacing strategy and performance during self-paced maximal exercise.Methods:Eight well-trained cyclists completed two 20-km time trials. Power output, rating of perceived exertion (RPE), positive and negative affect, and iEMG activity of the active musculature were recorded every 0.5 km, confidence in achieving preexercise goals was assessed every 5 km, and blood lactate and pH were measured postexercise. Differences in all parameters were assessed between fastest (FAST) and slowest (SLOW) trials performed.Results:Mean power output was significantly higher during the initial 90% of FAST, but not the final 10%, and blood lactate concentration was significantly higher and pH significantly lower following FAST. Mean iEMG activity was significantly higher throughout SLOW. Rating of perceived exertion was similar throughout both trials, but participants had significantly more positive affect and less negative affect throughout FAST. Participants grew less confident in their ability to achieve their goals throughout SLOW.Conclusions:The results suggest that affect may be the primary psychological regulator of pacing strategy and that higher levels of positivity and lower levels of negativity may have been associated with a more aggressive strategy during FAST. Although the exact mechanisms through which affect acts to influence performance are unclear, it may determine the degree of physiological disruption that can be tolerated, or be reflective of peripheral physiological status in relation to the still to be completed exercise task.

2018 ◽  
Vol 28 (3) ◽  
pp. 274-278 ◽  
Author(s):  
Terri Graham-Paulson ◽  
Claudio Perret ◽  
Victoria Goosey-Tolfrey

Caffeine’s (CAF) ability to influence upper-body exercise endurance performance may be related to an individual’s training status. This case study therefore aimed to investigate the ergogenic effects of CAF dose on 20-km time trial (TT) performance of an elite male paratriathlete (wheelchair user; age = 46 years, body mass = 76.9 kg, body fat = 25.4%, and handcycling ). The athlete completed four 20-km handcycling TTs on a Cyclus II ergometer under controlled laboratory conditions following the ingestion of 2, 4, and 6 mg/kg CAF or placebo (PLA). Blood lactate concentration, power output, arousal, and ratings of perceived exertion were recorded. Ingestion of 2, 4, and 6 mg/kg CAF resulted in a 2%, 1.5%, and 2.7% faster TT compared with PLA (37:40 min:s). The participant’s blood lactate concentration increased throughout all trials and was greater during CAF compared with PLA. There were no obvious differences in ratings of perceived exertion between trials despite different performance times. Baseline arousal scores differed between PLA and 4 mg/kg CAF (1 = low), and 2 and 6 mg/kg CAF (3 = moderate). Arousal increased at each time point following the ingestion of 4 and 6 mg/kg CAF. The largest CAF dose resulted in a positive pacing strategy, which, when combined with an end spurt, resulted in the fastest TT. CAF improved 20-km TT performance of an elite male paratriathlete, which may be related to greater arousal and an increased power output for a given rating of perceived exertion.


Sports ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 23
Author(s):  
Gavriil G. Arsoniadis ◽  
Ioannis S. Nikitakis ◽  
Petros G. Botonis ◽  
Ioannis Malliaros ◽  
Argyris G. Toubekis

Background: Physiological and biomechanical parameters obtained during testing need validation in a training setting. The purpose of this study was to compare parameters calculated by a 5 × 200-m test with those measured during an intermittent swimming training set performed at constant speed corresponding to blood lactate concentration of 4 mmol∙L−1 (V4). Methods: Twelve competitive swimmers performed a 5 × 200-m progressively increasing speed front crawl test. Blood lactate concentration (BL) was measured after each 200 m and V4 was calculated by interpolation. Heart rate (HR), rating of perceived exertion (RPE), stroke rate (SR) and stroke length (SL) were determined during each 200 m. Subsequently, BL, HR, SR and SL corresponding to V4 were calculated. A week later, swimmers performed a 5 × 400-m training set at constant speed corresponding to V4 and BL-5×400, HR-5×400, RPE-5×400, SR-5×400, SL-5×400 were measured. Results: BL-5×400 and RPE-5×400 were similar (p > 0.05), while HR-5×400 and SR-5×400 were increased and SL-5×400 was decreased compared to values calculated by the 5 × 200-m test (p < 0.05). Conclusion: An intermittent progressively increasing speed swimming test provides physiological information with large interindividual variability. It seems that swimmers adjust their biomechanical parameters to maintain constant speed in an aerobic endurance training set of 5 × 400-m at intensity corresponding to 4 mmol∙L−1.


2018 ◽  
Vol 13 (9) ◽  
pp. 1215-1222 ◽  
Author(s):  
Theo Ouvrard ◽  
Alain Groslambert ◽  
Gilles Ravier ◽  
Sidney Grosprêtre ◽  
Philippe Gimenez ◽  
...  

Purpose: To identify the impact of a leading teammate in front of a cyclist on psychological, physiological, biomechanical, and performance parameters during an uphill maximal effort. Methods: After familiarization, 12 well-trained competitive cyclists completed 2 uphill time trials (UTTs, 2.7 km at 7.4%) in randomized order; that is, 1 performed alone (control condition) and 1 followed a simulated teammate during the entire UTT (leader condition). Performance (UTT time) and mean power output (PO) were recorded for each UTT. For physiological parameters, mean heart rate and postexercise blood lactate concentration were recorded. Psychological parameters (rating of perceived exertion, pleasure, and attentional focus) were collected at the end of each trial. Results: Performance (UTT time) significantly improved by 4.2% (3.1%) in the leader condition, mainly due to drafting decrease of the aerodynamic drag (58% of total performance gains) and higher end spurt (+9.1% [9.1%] of mean PO in the last 10% of the UTT). However, heart rate and postexercise blood lactate concentration were not significantly different between conditions. From a psychological aspect, higher pleasure was observed in the leader condition (+41.1% [51.7%]), but attentional focus was not significantly different. Conclusions: The presence of a leading teammate during uphill cycling had a strong impact on performance, enabling higher speed for the same mean PO and greater end spurt. These results explain why the best teams competing for the general classification of the most prestigious and contested races like the Grand Tours tend to always protect their leader with teammates during decisive ascents.


2017 ◽  
Vol 12 (9) ◽  
pp. 1256-1263 ◽  
Author(s):  
Carlo Castagna ◽  
Lorenzo Francini ◽  
Susana C.A. Póvoas ◽  
Stefano D’Ottavio

Purpose:To examine the acute effects of generic drills (running drills [RDs]) and specific (small-sided-games [SSGs]) long-sprint-ability (LSA) drills on internal and external load of male soccer players. Methods:Fourteen academy-level soccer players (mean ± SD age 17.6 ± 0.61 y, height 1.81 ± 0.63 m, body mass 69.53 ± 4.65 kg) performed four 30-s LSA bouts for maintenance (work:rest 1:2) and production (1:5) with RDs and SSGs. Players’ external load was tracked with GPS technology (20-Hz), and heart rate (HR), blood lactate concentration (BLc), and rating of perceived exertion (RPE) were used to characterize players’ internal load. Individual peak BLc was assessed with a 30-s all-out test on a nonmotorized treadmill (NMT). Results:Compared with SSGs, the RDs had a greater effect on external load and BLc (large and small, respectively). During SSGs players covered more distance with high-intensity decelerations (moderate to small). Muscular RPE was higher (small to large) in RDs than in SSGs. The production mode exerted a moderate effect on BLc while the maintenance condition elicited higher cardiovascular effects (small to large). Conclusion:The results of this study showed the superiority of generic over specific drills in inducing LSA-related physiological responses. In this regard production RDs showed the higher postexercise BLc. Individual peak blood lactate responses were found after the NMT 30-s all-out test, suggesting this drill as a valid option to RDs. The practical physiological diversity among the generic and specific LSA drills here considered enable fitness trainers to modulate prescription of RD and SSG drills for LSA according to training schedule.


Author(s):  
Kirstie J Turner ◽  
Anthony J Rice

Stationary cycling is a common training mode of rowers, used to provide variety in training programs and prevent overuse injuries commonly associated with the repetitive nature of the rowing stroke. The purpose of this study was to investigate the differences in physiological responses on a Concept II BikeErg (Concept II BikeErg; Concept2 Inc., US) and Concept II RowErg (Concept II Model D; Concept2 Inc., US) at matched submaximal workloads so training load can be appropriately prescribed for stationary cycling. Ten well-trained, male rowers completed 6 min of exercise at four submaximal workloads (50%, 62.5%, 75% and 87.5% of their most recent 2000 m RowErg score) interspersed with 2-minute recovery periods on both ergometers in a single day. Ergometer order was randomised and balanced between groups. At matched power output (PO) results while on the RowErg were significantly higher across all workloads for rate of oxygen consumption ([Formula: see text]), rate of carbon dioxide production ([Formula: see text]), minute ventilation ([Formula: see text]) and heart rate (HR) (p < 0.05) and across the final two workloads for Rating of Perceived Exertion (RPE) and blood lactate concentration (BLa) (p < 0.05). When oxygen uptake at a fixed value ([Formula: see text] = 3.5 L.min−1) was matched between groups results while on the RowErg were significantly lower for PO, BLa, [Formula: see text], RER and RPE whereas [Formula: see text] and HR were similar to the BikeErg. These results support the understanding that displayed power output on the RowErg does not account for all work done during the rowing stroke cycle, specifically during the recovery phase. In conclusion, the physiological responses on the Concept II BikeErg are no more closely aligned to the Concept II RowErg than previously shown for similar cycle ergometers from different manufacturers. Due to the lack of consistency between Concept II BikeErg and Concept II RowErg PO, HR is better suited for the prescription of training loads on the BikeErg.


2021 ◽  
Vol 6 (2) ◽  
pp. 44
Author(s):  
Stefano Benítez-Flores ◽  
Carlos A. Magallanes ◽  
Cristine Lima Alberton ◽  
Todd A. Astorino

The aim of this study was to compare the acute responses to three time-matched exercise regimens. Ten trained adults (age, maximum oxygen consumption (VO2max), and body mass index (BMI) = 25.9 ± 5.6 yr, 50.9 ± 5.4 mL·kg−1·min−1, and 22.1 ± 1.8 kg·m−2) completed sprint interval training (SIT) requiring 14 × 5 s efforts with 35 s of recovery, high-intensity interval training (HIIT) consisting of 18 × 15 s efforts at ~90% of peak heart rate (HRpeak) with 15 s of recovery, and vigorous continuous training (CT) consisting of 8.75 min at ~85 %HRpeak, in randomized order. Heart rate, blood lactate concentration, rating of perceived exertion, affective valence, and enjoyment were monitored. Moreover, indices of neuromuscular function, autonomic balance, diet, mental stress, incidental physical activity (PA), and sleep were measured 24 h after each session to analyze the magnitude of recovery. Both HIIT and CT exhibited a greater %HRpeak and time ≥ 90 %HRpeak than SIT (p < 0.05). Blood lactate and rating of perceived exertion were higher in response to SIT and HIIT vs. CT (p < 0.05); however, there were no differences in enjoyment (p > 0.05). No differences were exhibited in any variable assessed along 24 h post-exercise between conditions (p > 0.05). These data suggest that HIIT and CT accumulate the longest duration at near maximal intensities, which is considered a key factor to enhance VO2max.


2020 ◽  
Vol 15 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Ana Gay ◽  
Gracia López-Contreras ◽  
Ricardo J. Fernandes ◽  
Raúl Arellano

Purpose: To observe changes in performance, physiological, and general kinematic variables induced by the use of wetsuits vs swimsuits in both swimming-pool and swimming-flume conditions. Methods: In a randomized and counterbalanced order, 33 swimmers (26.46 [11.72] y old) performed 2 × 400-m maximal front crawl in a 25-m swimming pool (with wetsuit and swimsuit), and their mean velocities were used later in 2 swimming-flume trials with both suits. Velocity, blood lactate concentration, heart rate (HR), Borg scale (rating of perceived exertion), stroke rate, stroke length (SL), stroke index, and propelling efficiency were evaluated. Results: The 400-m performance in the swimming pool was 0.07 m·s−1 faster when using the wetsuit than when using the swimsuit, evidencing a reduction of ∼6% in time elapsed (P < .001). Maximal HR, maximal blood lactate concentration, rating of perceived exertion, stroke rate, and propelling efficiency were similar when using both swimsuits, but SL and stroke index presented higher values with the wetsuit in both the swimming pool and the swimming flume. Comparing swimming conditions, maximal HR and maximal blood lactate concentration were lower, and SL, stroke index, and propelling efficiency were higher when swimming in the flume than when swimming in the pool with both suits. Conclusions: The 6% velocity improvement was the result of an increase of 4% in SL. Swimmers reduced stroke rate and increased SL to benefit from the hydrodynamic reduction of the wetsuit and increase their swimming efficiency. Wetsuits might be utilized during training seasons to improve adaptations while swimming.


2015 ◽  
Vol 40 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Vicente Javier Clemente-Suárez

Many studies have researched the psychophysiological response and energy balance of athletes in numerous ultraendurance probes, but none has investigated an ultraendurance mountain running event. The current study aims to analyze changes in blood lactate concentration, rating of perceived exertion, heart rate, heart rate variability, and energy balance after the performance of an ultraendurance mountain running event. The parameters in the 6 participants who finished the event were analyzed (age, 30.8 ± 3.1 years; height, 176.2 ± 8.6 cm; body mass, 69.2 ± 3.7 kg). The race covered 54 km, with 6441 m of altitude change, 3556 m downhill and 2885 m uphill. The athletes completed together the race in 14 h and 6 min. After the ultraendurance event, the athletes presented a negative energy balance of 4732 kcal, a blood lactate concentration of 2.8 ± 0.3 mmol/L, a heart rate mean/heart rate maximum ratio of 0.64, a heart rate mean of 111.4 ± 5.9 beats/min, a decrease in vagal modulation, and an increase in sympathetic modulation, and recorded 19.5 ± 1.5 points on the 6–20 rating of perceived exertion scale. The event was a stressful stimulus for the athletes despite the low intensity measured by blood lactate concentration and heart rate. The results obtained may be used by coaches as a reference parameter of heart rate, heart rate variability, rating of perceived exertion, and lactate concentration to develop specific training programs. In addition, the energy balance data obtained in this research may improve nutritional intake strategies.


2018 ◽  
Vol 35 (1) ◽  
pp. 76-92 ◽  
Author(s):  
Mário A.M. Simim ◽  
Gustavo R. da Mota ◽  
Moacir Marocolo ◽  
Bruno V.C. da Silva ◽  
Marco Túlio de Mello ◽  
...  

We investigated the match demands (distances covered and acute physiological responses) of amputee soccer and its impact on muscular endurance and power. Measures such as heart rate, blood lactate concentration, subjective rating of perceived exertion, and time-motion characteristics were recorded in 16 Brazilian amputee soccer players during matches. Before and after matches, players completed a battery of tests: push-ups, countermovement vertical jump performance, and medicine ball throwing. Small differences were found between the first and second half for the distance covered in total and across various speed categories. Heart rate responses, blood lactate concentrations, and peak speed did not differ between halves, and all neuromuscular performance measures decreased after the match particularly after push-ups, although the rating of perceived exertion increased markedly compared with prematches. Although match physical performances were consistent across halves, the overall demands impaired test performance, especially for upper limb and closed kinetic chain exercise.


Sign in / Sign up

Export Citation Format

Share Document