The Influences of Impact Interface, Muscle Activity, and Knee Angle on Impact Forces and Tibial and Femoral Accelerations Occurring after External Impacts

2010 ◽  
Vol 26 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Wolfgang Potthast ◽  
Gert-Peter Brüggemann ◽  
Arne Lundberg ◽  
Anton Arndt

The purpose of this study was to quantify relative contributions of impact interface, muscle activity, and knee angle to the magnitudes of tibial and femoral accelerations occurring after external impacts. Impacts were initiated with a pneumatically driven impacter under the heels of four volunteers. Impact forces were quantified with a force sensor. Segmental accelerations were measured with bone mounted accelerometers. Experimental interventions were hard and soft shock interfaces, different knee angles (0°, 20°, 40° knee flexion), and muscular preactivation (0%, 30%, 60% of maximal voluntary contraction) of gastrocnemii, hamstrings, and quadriceps. Greater knee flexion led to lower impact forces and higher tibial accelerations. Increased muscular activation led to higher forces and lower tibial accelerations. The softer of the two shock interfaces under study reduced both parameters. The effects on accelerations and forces through the activation and knee angle changes were greater than the effect of interface variations. The hardness of the two shock interfaces explained less than 10% of the variance of accelerations and impact forces, whereas knee angle changes explained 25–29%, and preactivation changes explained 35–48% of the variances. It can be concluded that muscle force and knee joint angle have greater effects in comparison with interface hardness on the severity of shocks on the lower leg.

2020 ◽  
pp. 1-6
Author(s):  
Raki Kawama ◽  
Masamichi Okudaira ◽  
David H. Fukuda ◽  
Hirohiko Maemura ◽  
Satoru Tanigawa

Context: Each hamstring muscle is subdivided into several regions by multiple motor nerve branches, which implies each region has different muscle activation properties. However, little is known about the muscle activation of each region with a change in the knee joint angle. Understanding of regional activation of the hamstrings could be helpful for designing rehabilitation and training programs targeted at strengthening a specific region. Objective: To investigate the effect of knee joint angle on the activity level of several regions within the individual hamstring muscles during isometric knee-flexion exercise with maximal effort (MVCKF). Design: Within-subjects repeated measures. Setting: University laboratory. Participants: Sixteen young males with previous participation in sports competition and resistance training experience. Intervention: The participants performed 2 MVCKF trials at each knee joint angle of 30°, 60°, and 90°. Outcome Measures: Surface electromyography was used to measure muscle activity in the proximal, middle, and distal regions of the biceps femoris long head (BFlh), semitendinosus, and semimembranosus of hamstrings at 30°, 60°, and 90° of knee flexion during MVCKF. Results: Muscle activity levels in the proximal and middle regions of the BFlh were higher at 30° and 60° of knee flexion than at 90° during MVCKF (all: P < .05). Meanwhile, the activity levels in the distal region of the BFlh were not different among all of the evaluated knee joint angles. In semitendinosus and semimembranosus, the activity levels were higher at 30° and 60° than at 90°, regardless of region (all: P < .05). Conclusion: These findings suggest that the effect of knee joint angle on muscle activity level differs between regions of the BFlh, whereas that is similar among regions of semitendinosus and semimembranosus during MVCKF.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Raphael Uwamahoro ◽  
Kenneth Sundaraj ◽  
Indra Devi Subramaniam

AbstractThis research has proved that mechanomyographic (MMG) signals can be used for evaluating muscle performance. Stimulation of the lost physiological functions of a muscle using an electrical signal has been determined crucial in clinical and experimental settings in which voluntary contraction fails in stimulating specific muscles. Previous studies have already indicated that characterizing contractile properties of muscles using MMG through neuromuscular electrical stimulation (NMES) showed excellent reliability. Thus, this review highlights the use of MMG signals on evaluating skeletal muscles under electrical stimulation. In total, 336 original articles were identified from the Scopus and SpringerLink electronic databases using search keywords for studies published between 2000 and 2020, and their eligibility for inclusion in this review has been screened using various inclusion criteria. After screening, 62 studies remained for analysis, with two additional articles from the bibliography, were categorized into the following: (1) fatigue, (2) torque, (3) force, (4) stiffness, (5) electrode development, (6) reliability of MMG and NMES approaches, and (7) validation of these techniques in clinical monitoring. This review has found that MMG through NMES provides feature factors for muscle activity assessment, highlighting standardized electromyostimulation and MMG parameters from different experimental protocols. Despite the evidence of mathematical computations in quantifying MMG along with NMES, the requirement of the processing speed, and fluctuation of MMG signals influence the technique to be prone to errors. Interestingly, although this review does not focus on machine learning, there are only few studies that have adopted it as an alternative to statistical analysis in the assessment of muscle fatigue, torque, and force. The results confirm the need for further investigation on the use of sophisticated computations of features of MMG signals from electrically stimulated muscles in muscle function assessment and assistive technology such as prosthetics control.


2021 ◽  
Vol 49 (4) ◽  
pp. 994-1004
Author(s):  
Andreas Martin Seitz ◽  
Florian Schall ◽  
Steffen Paul Hacker ◽  
Stefan van Drongelen ◽  
Sebastian Wolf ◽  
...  

Background: The anatomic appearance and biomechanical and clinical importance of the anterior meniscus roots are well described. However, little is known about the loads that act on these attachment structures under physiological joint loads and movements. Hypotheses: As compared with uniaxial loading conditions under static knee flexion angles or at very low flexion-extension speeds, more realistic continuous movement simulations in combination with physiological muscle force simulations lead to significantly higher anterior meniscus attachment forces. This increase is even more pronounced in combination with a longitudinal meniscal tear or after total medial meniscectomy. Study Design: Controlled laboratory study. Methods: A validated Oxford Rig–like knee simulator was used to perform a slow squat, a fast squat, and jump landing maneuvers on 9 cadaveric human knee joints, with and without muscle force simulation. The strains in the anterior medial and lateral meniscal periphery and the respective attachments were determined in 3 states: intact meniscus, medial longitudinal tear, and total medial meniscectomy. To determine the attachment forces, a subsequent in situ tensile test was performed. Results: Muscle force simulation resulted in a significant strain increase at the anterior meniscus attachments of up to 308% ( P < .038) and the anterior meniscal periphery of up to 276%. This corresponded to significantly increased forces ( P < .038) acting in the anteromedial attachment with a maximum force of 140 N, as determined during the jump landing simulation. Meniscus attachment strains and forces were significantly influenced ( P = .008) by the longitudinal tear and meniscectomy during the drop jump simulation. Conclusion: Medial and lateral anterior meniscus attachment strains and forces were significantly increased with physiological muscle force simulation, corroborating our hypothesis. Therefore, in vitro tests applying uniaxial loads combined with static knee flexion angles or very low flexion-extension speeds appear to underestimate meniscus attachment forces. Clinical Relevance: The data of the present study might help to optimize the anchoring of meniscal allografts and artificial meniscal substitutes to the tibial plateau. Furthermore, this is the first in vitro study to indicate reasonable minimum stability requirements regarding the reattachment of torn anterior meniscus roots.


Author(s):  
Haerim Bak ◽  
Clive D’Souza ◽  
Gwanseob Shin

Physical demands of household carpet vacuuming and associated risks for musculoskeletal problems have received little attention although the level of muscle exertions is often assumed to be similar to that of occupational vacuuming. The aim of this study was to quantitatively assess the level of muscle activities of the upper extremity during carpeted floor vacuuming with household upright vacuum cleaners. Eighteen participants conducted four different carpet vacuuming tasks with two different cleaner models. Electromyography data from seven upper extremity muscles were collected. Median muscle activity ranged from 4.5% to 47.5% of the maximum voluntary contraction capacity for female participants and from 2.7% to 23.6% for male participants. Normalized muscle activity levels were significantly higher in women compared to men across tasks and muscle groups. Study results suggest that home vacuuming with upright vacuum cleaners is physically intensive work, especially for female users who are less physically capable.


2004 ◽  
Vol 97 (5) ◽  
pp. 1693-1701 ◽  
Author(s):  
C. J. de Ruiter ◽  
R. D. Kooistra ◽  
M. I. Paalman ◽  
A. de Haan

We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90° knee angle. Experiments were performed in subjects ( n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60°). At each knee angle, voluntary MRTD and stimulated MRTD were similar ( P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent ( P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 ± 3.1 to 83.3 ± 3.2% and were positively related ( r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242324
Author(s):  
Jonathan Harnie ◽  
Thomas Cattagni ◽  
Christophe Cornu ◽  
Peter McNair ◽  
Marc Jubeau

The aim of the current study was to investigate the effect of a single session of prolonged tendon vibration combined with low submaximal isometric contraction on maximal motor performance. Thirty-two young sedentary adults were assigned into two groups that differed based on the knee angle tested: 90° or 150° (180° = full knee extension). Participants performed two fatigue-inducing exercise protocols: one with three 10 min submaximal (10% of maximal voluntary contraction) knee extensor contractions and patellar tendon vibration (80 Hz) another with submaximal knee extensor contractions only. Before and after each fatigue protocol, maximal voluntary isometric contractions (MVC), voluntary activation level (assessed by the twitch interpolation technique), peak-to-peak amplitude of maximum compound action potentials of vastus medialis and vastus lateralis (assessed by electromyography with the use of electrical nerve stimulation), peak twitch amplitude and peak doublet force were measured. The knee extensor fatigue was significantly (P<0.05) greater in the 90° knee angle group (-20.6% MVC force, P<0.05) than the 150° knee angle group (-8.3% MVC force, P = 0.062). Both peripheral and central alterations could explain the reduction in MVC force at 90° knee angle. However, tendon vibration added to isometric contraction did not exacerbate the reduction in MVC force. These results clearly demonstrate that acute infrapatellar tendon vibration using a commercial apparatus operating at optimal conditions (i.e. contracted and stretched muscle) does not appear to induce knee extensor neuromuscular fatigue in young sedentary subjects.


2018 ◽  
Vol 32 (9) ◽  
pp. 810-820 ◽  
Author(s):  
Kendra M. Cherry-Allen ◽  
Matthew A. Statton ◽  
Pablo A. Celnik ◽  
Amy J. Bastian

Background. Gait impairments after stroke arise from dysfunction of one or several features of the walking pattern. Traditional rehabilitation practice focuses on improving one component at a time, which may leave certain features unaddressed or prolong rehabilitation time. Recent work shows that neurologically intact adults can learn multiple movement components simultaneously. Objective. To determine whether a dual-learning paradigm, incorporating 2 distinct motor tasks, can simultaneously improve 2 impaired components of the gait pattern in people posttroke. Methods. Twelve individuals with stroke participated. Participants completed 2 sessions during which they received visual feedback reflecting paretic knee flexion during walking. During the learning phase of the experiment, an unseen offset was applied to this feedback, promoting increased paretic knee flexion. During the first session, this task was performed while walking on a split-belt treadmill intended to improve step length asymmetry. During the second session, it was performed during tied-belt walking. Results. The dual-learning task simultaneously increased paretic knee flexion and decreased step length asymmetry in the majority of people post-stroke. Split-belt treadmill walking did not significantly interfere with joint-angle learning: participants had similar rates and magnitudes of joint-angle learning during both single and dual-learning conditions. Participants also had significant changes in the amount of paretic hip flexion in both single and dual-learning conditions. Conclusions. People with stroke can perform a dual-learning paradigm and change 2 clinically relevant gait impairments in a single session. Long-term studies are needed to determine if this strategy can be used to efficiently and permanently alter multiple gait impairments.


Author(s):  
Yuki Kurokawa ◽  
Satoshi Kato ◽  
Satoru Demura ◽  
Kazuya Shinmura ◽  
Noriaki Yokogawa ◽  
...  

BACKGROUND: Abdominal bracing is effective in strengthening the trunk muscles; however, assessing performance can be challenging. We created a device for performing abdominal trunk muscle exercises. The effectiveness of this device has not yet been evaluated or compared OBJECTIVE: We aimed to quantify muscle activity levels during exercise using our innovative device and to compare them with muscle activation during abdominal bracing maneuvers. METHODS: This study included 10 men who performed abdominal bracing exercises and exercises using our device. We measured surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique, internal oblique (IO), and erector spinae (ES) muscles in each of the exercises. The EMG data were normalized to those recorded during maximal voluntary contraction (%EMGmax). RESULTS: During the bracing exercise, the %EMGmax of IO was significantly higher than that of RA and ES (p< 0.05), whereas during the exercises using the device, the %EMGmax of IO was significantly higher than that of ES (p< 0.05). No significant difference was observed in the %EMGmax of any muscle between bracing exercises and the exercises using the device (p= 0.13–0.95). CONCLUSIONS: The use of our innovative device results in comparable activation to that observed during abdominal bracing.


Author(s):  
Courtney Middelcoop ◽  
Colten Fales ◽  
Richard T. Stone ◽  
Joseph Kim ◽  
Kristina Schaffhausen ◽  
...  

In studying the effects of expertise on different performance aspects of the gymnastic vault event, various springboard types with similar compression forces were evaluated between expert and novice-level gymnasts. Surface EMGs (sEMG) were placed on four major muscles (biceps femoris, rectus femoris, gastrocnemius medialis, and tibialis anterior) to find each gymnasts’ maximum voluntary contraction. Similarly, board compression and knee flexion angles were also captured at various phases of the performed vaults. Given that gymnasts with more expertise were more consistent in their landing spot on the various vault boards, they had more consistent performance outputs as a result. Expert gymnasts did this by more accurately hitting the sweet spot, more consistently activating their hamstring and gastrocnemius, and decreasing variability during the initial contact phase. By doing this, board compression and performance were both optimized. Coaches can use this information to accelerate the development of novice gymnasts by targeting these aspects.


Sign in / Sign up

Export Citation Format

Share Document