Effects of Ankle Joint Position and Submaximal Muscle Contraction Intensity on Soleus H-reflex Modulation in Young and Older Adults

Motor Control ◽  
2014 ◽  
Vol 18 (2) ◽  
pp. 112-126 ◽  
Author(s):  
Yung-Sheng Chen ◽  
Shi Zhou ◽  
Colleen Cartwright
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0245979
Author(s):  
Mei Teng Woo ◽  
Keith Davids ◽  
Jia Yi Chow ◽  
Timo Jaakkola

Functional proprioceptive information is required to allow an individual to interact with the environment effectively for everyday activities such as locomotion and object manipulation. Specifically, research suggests that application of compression garments could improve proprioceptive regulation of action by enhancing sensorimotor system noise in individuals of different ages and capacities. However, limited research has been conducted with samples of elderly people thus far. This study aimed to examine acute effects of wearing knee-length socks (KLS) of various compression levels on ankle joint position sense in community-dwelling, older adults. A total of 26 participants (12 male and 14 female), aged between 65 and 84 years, were randomly recruited from local senior activity centres in Singapore. A repeated-measures design was used to determine effects on joint position awareness of three different treatments–wearing clinical compression socks (20–30 mmHg); wearing non-clinical compression socks (< 20 mmHg); wearing normal socks, and one control condition (barefoot). Participants were required to use the dominant foot to indicate 8 levels of steepness (2.5°, 5°, 7.5°, 10°, 12.5°, 15°, 17.5°, and 20°), while standing on a modified slope box, in a plantar flexion position. Findings showed that wearing clinical compression KLS significantly reduced the mean absolute errors compared to the barefoot condition. However, there were no significant differences observed between other KLS and barefoot conditions. Among the KLS of various compression levels, results suggested that only wearing clinical compression KLS (20–30 mmHg) improved the precision of estimation of ankle joint plantar flexion movement, by reducing absolute performance errors in elderly people. It is concluded that wearing clinical compression KLS could potentially provide an affordable strategy to ameliorate negative effects of ageing on the proprioception system to enhance balance and postural control in community-dwelling individuals.


Author(s):  
Yung-Sheng Chen ◽  
Shi Zhou ◽  
Zachary J. Crowley-McHattan ◽  
Pedro Bezerra ◽  
Wei-Chin Tseng ◽  
...  

This study examined the acute effects of stretch tensions of kinesiology taping (KT) on the soleus (SOL), medial (MG), and lateral (LG) gastrocnemius Hoffmann-reflex (H-reflex) modulation in physically active healthy adults. A cross-over within-subject design was used in this study. Twelve physically active collegiate students voluntarily participated in the study (age = 21.3 ± 1.2 years; height = 175.6 ± 7.1 cm; body weight = 69.9 ± 7.1 kg). A standard Y-shape of KT technique was applied to the calf muscles. The KT was controlled in three tension intensities in a randomised order: paper-off, 50%, and 100% of maximal stretch tension of the tape. The peak-to-peak amplitude of maximal M-wave (Mmax) and H-reflex (Hmax) responses in the SOL, MG, and LG muscles were assessed before taping (pre-taping), taping, and after taping (post-taping) phases in the lying prone position. The results demonstrated significantly larger LG Hmax responses in the pre-taping condition than those in the post-taping condition during paper-off KT (p = 0.002). Moreover, the ΔHmax/Mmax of pre- and post-taping in the SOL muscle was significantly larger during 50%KT tension than that of paper-off (p = 0.046). In conclusion, the stretch tension of KT contributes minor influence on the spinal motoneuron excitability in the triceps surae during rest.


2003 ◽  
Vol 89 (2) ◽  
pp. 648-656 ◽  
Author(s):  
Cyril Schneider ◽  
Charles Capaday

When untrained subjects walk backward on a treadmill the amplitude of the soleus H-reflex in midswing is equal to or exceeds the value in stance. This is a surprising result because during the swing phase of backward walking the soleus is inactive and its antagonist, the tibialis anterior, is active. We suggested that the high amplitude of the soleus H-reflex in late swing reflects task uncertainties, such as estimating the moment of foot contact with the ground and losing balance. In support of this idea we show that when untrained subjects held on to handrails the unexpected high-amplitude H-reflex during midswing was no longer present. We therefore asked whether daily training at this task without grasping the handrails would adaptively modify the H-reflex modulation pattern. In this event, within 10 days of training for 15 min daily, the anticipatory reflex activity at the beginning of training was gradually abated as the subjects reported gaining confidence at the task. However, when adapted subjects were made to walk backward with their eyes shut, the anticipatory reflex activity in midswing returned immediately. The reflex changes as a result of training were not due to changes in the motor activity or kinematics; they are likely part of the motor program controlling backward walking. This adaptive phenomenon may prove to be a useful model for studying the neural mechanisms of motor learning and adaptive plasticity in humans and may be relevant to rehabilitation programs for neurological patients.


Author(s):  
Constantinos Maganaris ◽  
Vasilios Baltzopoulos ◽  
David Jones ◽  
Irene Di Giulio ◽  
Neil Reeves ◽  
...  

This chapter discusses strategies that older and younger people employ to negotiate stairs based on experiments performed on an instrumented staircase in lab environment aiming at identifying ways to reduce stair fall risk for the elderly. Stair negotiation was found to be more demanding for the knee and ankle joint muscles in older than younger adults, with the demand increasing further when the step-rise was higher. During descent of stairs with higher step-rises, older adults shifted the centre of mass (COM) posteriorly, behind the centre of pressure (COP) to prevent forward falling. A decreased step-going resulted in a slower descent of the centre of mass in the older adults and standing on a single leg for longer than younger adults. A greater reliance on the handrails and rotation of the body in the direction of the handrail was also observed when the step-going was decreased during descent, which allowed this task to be performed with better dynamic stability, by maintaining the COM closer to the COP. These findings have important implications for stair design and exercise programs aiming at improving safety on stairs for the elderly.


Author(s):  
J.F. Yang ◽  
J. Fung ◽  
M. Edamura ◽  
R. Blunt ◽  
R.B. Stein ◽  
...  

ABSTRACT:Hoffmann (H) reflexes were elicited from the soleus muscle during treadmill walking in 21 spastic paretic patients. The soleus and tibialis anterior muscles were reciprocally activated during walking in most patients, much like that observed in healthy individuals. The pattern of H-reflex modulation varied considerably between patients, from being relatively normal in some patients to a complete absence of modulation in others. The most common pattern observed was a lack of H-reflex modulation through the stance phase and slight depression of the reflex in the swing phase, considerably less modulation than that of normal subjects under comparable walking conditions. The high reflex amplitudes during periods of the step cycle such as early stance seems to be related to the stretch-induced large electromyogram bursts in the soleus in some subjects. The abnormally active reflexes appear to contribute to the clonus encountered during walking in these patients. In three patients who were able to walk for extended periods, the effect of stimulus intensity was examined. Two of these patients showed a greater degree of reflex modulation at lower stimulus intensities, suggesting that the lack of modulation observed at higher stimulus intensities is a result of saturation of the reflex loop. In six other patients, however, no reflex modulation could be demonstrated even at very low stimulus intensities.


2006 ◽  
Vol 96 (1) ◽  
pp. 197-208 ◽  
Author(s):  
Birgit Larsen ◽  
Michael Voigt

The main aims of this study were 1) to investigate possible phase-, speed-, and task-dependent changes in the quadriceps H-reflex during pedaling, and to achieve this, 2) to develop an optimized H-reflex recording and processing procedure for recording of quadriceps H-reflexes during movement. It was hypothesized that the behavior of the quadriceps H-reflex concerning phase, speed, and task dependency corresponds to the behavior of the soleus H-reflex during rhythmical leg movements. The applied H-reflex procedure appeared to be reliable for obtaining the quadriceps H-reflex modulation during leg movement. The vastus lateralis (VL) and rectus femoris (RF) H-reflexes showed a phase-dependent modulation during pedaling at a frequency of 80 rpm with almost parallel changes in the reflex amplitude and motor recruitment level. However, when the speed of movement was reduced from 80 to 40 revolutions per minute (rpm) and crank load simultaneously increased (i.e., a halving of the movement speed with a constant motor recruitment level), the quadriceps H-reflex modulation pattern changed significantly in relation to the pattern of motor recruitment, i.e., at 40 rpm, the reflex excitability remained high during a gradual derecruitment during power generation in downstroke. Comparison of the “operationally defined H-reflex gain function” obtained during 1) pedaling at 80 rpm and 2) isometric quadriceps contractions in sitting position showed no significant task-dependent changes in the quadriceps H-reflex. Consequently, the hypothesis was only partly corroborated, and the findings indicate differences in the neural control of the soleus and the quadriceps muscle during rhythmical movements.


1999 ◽  
Vol 82 (2) ◽  
pp. 747-753 ◽  
Author(s):  
M. Garrett ◽  
T. Kerr ◽  
B. Caulfield

The purpose of this investigation was to investigate whether reduction in impulses arising from stretch of the quadriceps by restricting rapid knee flexion in early swing would affect inhibition of the H-reflex during swing. The contribution of afferent input arising from knee angular velocity to phase-dependent modulation of short-latency responses in the soleus was studied by simultaneously measuring joint velocity and soleus H-reflex responses at midstance and midswing phases of treadmill walking in 15 normal subjects. Stimulus strength was varied so that both maximal M and H waves were identified in each subject at midswing and midstance with the knee unrestricted (UK) and with knee movement restricted (RK), using a full leg bivalved cast to immobilize the knee joint. All subjects exhibited short-latency reflex responses in the soleus muscle. The H/M ratio at midswing was significantly reduced compared with midstance under both UK and RK walking conditions ( P < 0.0001). When compared with UK walking, knee joint angular velocity during RK walking was significantly reduced at midswing ( P < 0.001) and midstance ( P < 0.005) compared with UK. There were, however, no significant differences in H/M ratios at midswing and midstance between UK and RK walking tests. Inhibition of the H-reflex in the soleus muscle during swing was not affected by significant reduction in knee angular velocity. These results indicate that the sensory input from changes in angular velocity at the knee does not lay the inhibitory foundation of phase-related reflex modulation in the ankle extensors during walking as suggested by Brooke and colleagues.


Sign in / Sign up

Export Citation Format

Share Document