The Systemic Effects of Exercise on Regulators of Muscle and Bone in Girls and Women

2020 ◽  
Vol 32 (3) ◽  
pp. 117-123
Author(s):  
Yasmeen Mezil ◽  
J. Obeid ◽  
Sandeep Raha ◽  
Thomas J. Hawke ◽  
Brian W. Timmons

Purpose: To assess the systemic effects of an acute bout of moderate-intensity exercise on factors that are known to regulate muscle and bone growth in prepubertal girls and women. Methods: A total of 12 prepubertal girls (8–10 y) and 12 women (20–30 y) cycled at 60% maximal oxygen uptake for 1 hour followed by 1 hour recovery. Blood samples were collected at rest, mid-exercise, end of exercise, mid-recovery, and end of recovery. Plasma was analyzed for interleukin-6, chemokine ligand 1, fibroblast growth factor-2, total insulin growth factor-1 (IGF-1), and free IGF-1 using enzyme-linked immunosorbent assays assays. Results: Both groups had similar concentrations of systemic factors at baseline with the exception of free IGF-1, which was higher in girls (P = .001). Interleukin-6 response was lower in girls versus women (P = .04), with a difference of +105.1% at end of exercise (P < .001), +113.5% at mid-recovery (P = .001), and +93.2% at end of recovery (P = .02). Girls and women exhibited significant declines in chemokine ligand 1, fibroblast growth factor-2, and total IGF-1 during recovery. Conclusion: Compared with women, an acute bout of moderate-intensity exercise in girls elicits a lower inflammatory response, suggesting that other mechanisms may be more important for driving the anabolic effects of exercise on muscle and bone in girls.

Author(s):  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Yutaka Yoshida ◽  
Hidehiko Fujinaka

AbstractFibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.


Sign in / Sign up

Export Citation Format

Share Document