In Vitro Antagonistic Properties of a New Angiotensin Type 1 Receptor Blocker, Azilsartan, in Receptor Binding and Function Studies

2010 ◽  
Vol 336 (3) ◽  
pp. 801-808 ◽  
Author(s):  
Mami Ojima ◽  
Hideki Igata ◽  
Masayuki Tanaka ◽  
Hiroki Sakamoto ◽  
Takanobu Kuroita ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Molly Javier Uyeda ◽  
Robert A. Freeborn ◽  
Brandon Cieniewicz ◽  
Rosa Romano ◽  
Ping (Pauline) Chen ◽  
...  

Type 1 regulatory T (Tr1) cells are subset of peripherally induced antigen-specific regulatory T cells. IL-10 signaling has been shown to be indispensable for polarization and function of Tr1 cells. However, the transcriptional machinery underlying human Tr1 cell differentiation and function is not yet elucidated. To this end, we performed RNA sequencing on ex vivo human CD49b+LAG3+ Tr1 cells. We identified the transcription factor, BHLHE40, to be highly expressed in Tr1 cells. Even though Tr1 cells characteristically produce high levels of IL-10, we found that BHLHE40 represses IL-10 and increases IFN-γ secretion in naïve CD4+ T cells. Through CRISPR/Cas9-mediated knockout, we determined that IL10 significantly increased in the sgBHLHE40-edited cells and BHLHE40 is dispensable for naïve CD4+ T cells to differentiate into Tr1 cells in vitro. Interestingly, BHLHE40 overexpression induces the surface expression of CD49b and LAG3, co-expressed surface molecules attributed to Tr1 cells, but promotes IFN-γ production. Our findings uncover a novel mechanism whereby BHLHE40 acts as a regulator of IL-10 and IFN-γ in human CD4+ T cells.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1607 ◽  
Author(s):  
Manikowski ◽  
Jakobs ◽  
Jboor ◽  
Grobe

Sonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop. To interfere with reinforced Shh signaling, we examined the potential of defined heparin and heparan sulfate (HS) polysaccharides to block Shh solubilization and Ptc receptor binding. We confirm in vitro and in vivo that proteolytic cleavage of the N-terminal Cardin–Weintraub (CW) amino acid motif is a prerequisite for Shh solubilization and function. Consistent with the established binding of soluble heparin or HS to the Shh CW target motif, both polysaccharides impaired proteolytic Shh processing and release from source cells. We also show that HS and heparin bind to, and block, another set of basic amino acids required for unimpaired Shh binding to Ptc receptors on receiving cells. Both modes of Shh activity downregulation depend more on HS size and overall charge than on specific HS sulfation modifications. We conclude that heparin oligosaccharide interference in the physiological roles of HS in Shh release and reception may be used to expand the field of investigation to pharmaceutical intervention of tumor-promoting Shh functions.


2010 ◽  
Vol 298 (2) ◽  
pp. R411-R418 ◽  
Author(s):  
Daian Chen ◽  
Lisa Hazelwood ◽  
Lesley L. Walker ◽  
Brian J. Oldfield ◽  
Michael J. McKinley ◽  
...  

ANG II, the main circulating effector hormone of the renin-angiotensin system, is produced by enzymatic cleavage of angiotensinogen. The present study aimed to examine whether targeted deletion of the angiotensinogen gene ( Agt) altered brain ANG II receptor density or responsiveness to ANG II. In vitro autoradiography was used to examine the distribution and density of angiotensin type 1 (AT1) and type 2 receptors. In most brain regions, the distribution and density of angiotensin receptors were similar in brains of Agt knockout mice ( Agt −/− ) and wild-type mice. In Agt −/− mice, a small increase in AT1 receptor binding was observed in the rostral ventrolateral medulla (RVLM), a region that plays a critical role in blood pressure regulation. To examine whether Agt −/− mice showed altered responses to ANG II, blood pressure responses to intravenous injection (0.01–0.1 μg/kg) or RVLM microinjection (50 pmol in 50 nl) of ANG II were recorded in anesthetized Agt −/− and wild-type mice. Intravenous injections of phenylephrine (4 μg/kg and 2 μg/kg) were also made in both groups. The magnitude of the pressor response to intravenous injections of ANG II or phenylephrine was not different between Agt −/− and wild-type mice. Microinjection of ANG II into the RVLM induced a pressor response, which was significantly smaller in Agt −/− compared with wild-type mice (+10 ± 1 vs. +23 ± 4 mmHg, respectively, P = 0.004). Microinjection of glutamate into the RVLM (100 pmol in 10 nl) produced a robust pressor response, which was not different between Agt −/− and wild-type mice. A diminished response to ANG II microinjection in the RVLM of Agt −/− mice, despite an increased density of AT1 receptors suggests that signal transduction pathways may be altered in RVLM neurons of Agt −/− mice, resulting in attenuated cellular excitation.


2002 ◽  
Vol 184 (22) ◽  
pp. 6260-6269 ◽  
Author(s):  
David G. Thanassi ◽  
Christos Stathopoulos ◽  
Karen Dodson ◽  
Dominik Geiger ◽  
Scott J. Hultgren

ABSTRACT Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P pilus biogenesis by uropathogenic Escherichia coli. Structural analysis indicated PapC folds as a β-barrel with short extracellular loops and extensive periplasmic domains. Several periplasmic regions were localized, including two domains containing conserved cysteine pairs. Functional analysis of deletion mutants revealed that the PapC C terminus was not required for insertion of the usher into the outer membrane or for proper folding. The usher C terminus was not necessary for interaction with chaperone-subunit complexes in vitro but was required for pilus biogenesis in vivo. Interestingly, coexpression of PapC C-terminal truncation mutants with the chromosomal fim gene cluster coding for type 1 pili allowed P pilus biogenesis in vivo. These studies suggest that chaperone-subunit complexes target an N-terminal domain of the usher and that subunit assembly into pili depends on a subsequent function provided by the usher C terminus.


2006 ◽  
Vol 24 (Suppl 1) ◽  
pp. S23-S30 ◽  
Author(s):  
Georges Vauquelin ◽  
Frederik Fierens ◽  
Isabelle Van Liefde

2021 ◽  
Author(s):  
Anne Mouré ◽  
Sawsen Bekir ◽  
Elodie Bacou ◽  
Karine Haurogne ◽  
Marie Allard ◽  
...  

Abstract A bioArtificial pancreas (BAP) encapsulating high pancreatic islets concentration is a promising alternative for type 1 diabetes. However, the main limitation of this approach is O2 supply, especially until graft neovascularization. Here, we described a methodology to design an optimal O2-balanced BAP using statistical design of experiment (DoE). A full factorial DoE was first performed to screen two O2-technologies on their ability to preserve pseudo-islet viability and function under hypoxia and normoxia. Then, response surface methodology was used to define the optimal O2-carrier and islet seeding concentrations to maximize the number of viable pseudo-islets in the BAP containing an O2-generator under hypoxia. Monitoring of viability, function and maturation of neonatal pig islets for 15 days in vitro demonstrated the efficiency of the optimal O2-balanced BAP. The findings should allow the design of a more realistic BAP for humans with high islets concentration by maintaining the O2 balance in the device.


Sign in / Sign up

Export Citation Format

Share Document