scholarly journals Kinematics and dynamics of the East Pacific Rise linked to a stable, deep-mantle upwelling

2016 ◽  
Vol 2 (12) ◽  
pp. e1601107 ◽  
Author(s):  
David B. Rowley ◽  
Alessandro M. Forte ◽  
Christopher J. Rowan ◽  
Petar Glišović ◽  
Robert Moucha ◽  
...  

Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.

2020 ◽  
Author(s):  
William Hawley ◽  
James Gaherty

<p>Detailed knowledge of the seismic structure, fabric, and dynamics that surround the oceanic LAB continue to be refined through offshore seismic studies. Previous high-resolution studies in the Pacific basin far from plate boundaries show asthenospheric fabric that aligns neither with the lithospheric fabric (the paleo-spreading direction) nor with absolute plate motion, but rather in between. Here we present preliminary results from the Blanco Transform and Cascadia Initiative experiments, investigating the structure of the Juan de Fuca and Pacific plates on either side of the Blanco Transform. We measure ambient-noise and teleseismic Rayleigh-wave phase velocities, and solve for the period-dependent azimuthal anisotropy on either side of the transform. We will contextualize and interpret the fabrics based on mantle flow inferred from these previous Pacific basin studies. </p>


2021 ◽  
Author(s):  
Tak Ho ◽  
Keith Priestley ◽  
Eric Debayle

<p>We present a new radially anisotropic (<strong>ξ)</strong> tomographic model for the upper mantle to transition zone depths derived from a large Rayleigh (~4.5 x 10<sup>6 </sup>paths) and Love (~0.7 x 10<sup>6</sup> paths) wave path average dispersion curves with periods of 50-250 s and up to the fifth overtone. We first extract the path average dispersion characteristics from the waveforms. Dispersion characteristics for common paths (~0.3 x 10<sup>6</sup> paths) are taken from the Love and Rayleigh datasets and jointly inverted for isotropic V<sub>s </sub>and <strong>ξ</strong>. CRUST1.0 is used for crustal corrections and a model similar to PREM is used as a starting model. V<sub>s</sub> and <strong>ξ</strong> are regionalised for a 3D model. The effects of azimuthal anisotropy are accounted for during the regionalisation. Our model confirms large-scale upper mantle features seen in previously published models, but a number of these features are better resolved because of the increased data density of the fundamental and higher modes coverage from which our <strong>ξ</strong>(z) was derived. Synthetic tests show structures with radii of 400 km can be distinguished easily. Crustal perturbations of +/-10% to V<sub>p</sub>, V<sub>s</sub> and density, or perturbations to Moho depth of +/-10 km over regions of 400 km do not significantly change the model. The global average decreases from <strong>ξ~</strong>1.06 below the Moho to <strong>ξ</strong>~1 at ~275 km depth. At shallow depths beneath the oceans <strong>ξ</strong>>1 as is seen in previously published global mantle radially anisotropic models. The thickness of this layer increases slightly with the increasing age of the oceanic lithosphere. At ~200 km and deeper depths below the fast-spreading East Pacific Rise and starting at somewhat greater depths beneath the slower spreading ridges, <strong>ξ</strong><1. At depths ≥200 km and deeper depths below most of the backarc basins of the western Pacific <strong>ξ</strong><1. The signature of mid-ocean ridges vanishes at about 150 km depth in V<sub>s</sub> while it extends much deeper in the <strong>ξ</strong> model suggesting that upwelling beneath mid-ocean ridges could be more deeply rooted than previously believed. The pattern of radially anisotropy we observe, when compared with the pattern of azimuthal anisotropy determined from Rayleigh waves, suggests that the shearing at the bottom of the plates is only sufficiently strong to cause large-scale preferential alignment of the crystals when the plate motion exceeds some critical value which Debayle and Ricard (2013) suggest is about 4 cm/yr.</p>


Zootaxa ◽  
2012 ◽  
Vol 3241 (1) ◽  
pp. 35 ◽  
Author(s):  
TOMOYUKI KOMAI ◽  
SHINJI TSUCHIDA ◽  
MICHEL SEGONZAC

Five species of the hippolytid shrimp genus Lebbeus White, 1847 are reported from various deep-water hydrothermal ventsites in the Pacific Ocean: L. laurentae Wicksten, 2010 from the East Pacific Rise 13°N; L. wera Ahyong, 2009 from theBrothers Seamount, Kermadec Ridge, New Zealand; L. pacmanus sp. nov. from the Manus Basin, Bismarck Sea; L.shinkaiae sp. nov. from the Okinawa Trough, Japan; and L. thermophilus sp. nov. from the Manus and Lau basins, south-western Pacific. Lebbeus laurentae is fully redescribed because the original and subsequent descriptions are not totallydetailed. Differentiating characters among the three new species and close allies are discussed. Previous records of Lebbeus species from hydrothermal vents are reviewed.


1993 ◽  
Vol 98 (B10) ◽  
pp. 17875-17889 ◽  
Author(s):  
Yang Shen ◽  
Donald W. Forsyth ◽  
Daniel S. Scheirer ◽  
Ken C. Macdonald

Sign in / Sign up

Export Citation Format

Share Document