High-resolution constraints on LAB structure at the Blanco transform

Author(s):  
William Hawley ◽  
James Gaherty

<p>Detailed knowledge of the seismic structure, fabric, and dynamics that surround the oceanic LAB continue to be refined through offshore seismic studies. Previous high-resolution studies in the Pacific basin far from plate boundaries show asthenospheric fabric that aligns neither with the lithospheric fabric (the paleo-spreading direction) nor with absolute plate motion, but rather in between. Here we present preliminary results from the Blanco Transform and Cascadia Initiative experiments, investigating the structure of the Juan de Fuca and Pacific plates on either side of the Blanco Transform. We measure ambient-noise and teleseismic Rayleigh-wave phase velocities, and solve for the period-dependent azimuthal anisotropy on either side of the transform. We will contextualize and interpret the fabrics based on mantle flow inferred from these previous Pacific basin studies. </p>

2016 ◽  
Vol 2 (12) ◽  
pp. e1601107 ◽  
Author(s):  
David B. Rowley ◽  
Alessandro M. Forte ◽  
Christopher J. Rowan ◽  
Petar Glišović ◽  
Robert Moucha ◽  
...  

Earth’s tectonic plates are generally considered to be driven largely by negative buoyancy associated with subduction of oceanic lithosphere. In this context, mid-ocean ridges (MORs) are passive plate boundaries whose divergence accommodates flow driven by subduction of oceanic slabs at trenches. We show that over the past 80 million years (My), the East Pacific Rise (EPR), Earth’s dominant MOR, has been characterized by limited ridge-perpendicular migration and persistent, asymmetric ridge accretion that are anomalous relative to other MORs. We reconstruct the subduction-related buoyancy fluxes of plates on either side of the EPR. The general expectation is that greater slab pull should correlate with faster plate motion and faster spreading at the EPR. Moreover, asymmetry in slab pull on either side of the EPR should correlate with either ridge migration or enhanced plate velocity in the direction of greater slab pull. Based on our analysis, none of the expected correlations are evident. This implies that other forces significantly contribute to EPR behavior. We explain these observations using mantle flow calculations based on globally integrated buoyancy distributions that require core-mantle boundary heat flux of up to 20 TW. The time-dependent mantle flow predictions yield a long-lived deep-seated upwelling that has its highest radial velocity under the EPR and is inferred to control its observed kinematics. The mantle-wide upwelling beneath the EPR drives horizontal components of asthenospheric flows beneath the plates that are similarly asymmetric but faster than the overlying surface plates, thereby contributing to plate motions through viscous tractions in the Pacific region.


2020 ◽  
Vol 6 (28) ◽  
pp. eabb0476
Author(s):  
Jorge C. Castellanos ◽  
Jonathan Perry-Houts ◽  
Robert W. Clayton ◽  
YoungHee Kim ◽  
A. Christian Stanciu ◽  
...  

Buoyancy anomalies within Earth’s mantle create large convective currents that are thought to control the evolution of the lithosphere. While tectonic plate motions provide evidence for this relation, the mechanism by which mantle processes influence near-surface tectonics remains elusive. Here, we present an azimuthal anisotropy model for the Pacific Northwest crust that strongly correlates with high-velocity structures in the underlying mantle but shows no association with the regional mantle flow field. We suggest that the crustal anisotropy is decoupled from horizontal basal tractions and, instead, created by upper mantle vertical loading, which generates pressure gradients that drive channelized flow in the mid-lower crust. We then demonstrate the interplay between mantle heterogeneities and lithosphere dynamics by predicting the viscous crustal flow that is driven by local buoyancy sources within the upper mantle. Our findings reveal how mantle vertical load distribution can actively control crustal deformation on a scale of several hundred kilometers.


2021 ◽  
Author(s):  
Kimberly Huppert ◽  
J. Taylor Perron ◽  
Leigh Royden ◽  
Michael Toomey

<p>Geologic evidence of island uplift and subsidence can provide important observational constraints on the rheology, thermal evolution, and dynamics of the lithosphere and mantle – all of which have implications for understanding Earth’s heat budget, the styles of deformation that develop at plate boundaries, and the surface expression of mantle convection. Hotspot ocean islands, like the Hawaiian Islands, result from mantle plumes, which may originate as deep as the core-mantle boundary. They often host paleoshorelines, which preserve a geologic record of surface deformation, and they can also be situated far from complex plate boundaries that obscure evidence of dynamic topography – long wavelength, low amplitude topography resulting from mantle flow. Ocean islands therefore provide a unique window to deep earth processes operating today and in the geologic past.<br><br>We examine the relative contribution of lithosphere and mantle processes to surface deflection at ocean hotspots. The seafloor surrounding ocean hotspots is typically 0.5 - 2 km shallower than expected for its age over areas hundreds to >1000 km wide, but the processes generating these bathymetric swells are uncertain. Swells may result from reheating and thinning of the lithosphere and the isostatic effect of replacing colder, denser lithosphere with hotter, less dense upper mantle. Alternately, they may be supported by upward flow of ascending mantle plumes and/or hot, buoyant plume material ponded beneath the lithosphere. Because these two end-member models predict different patterns of seafloor and island subsidence, swell morphology and the geologic record of island drowning may reveal which of these mechanisms dominates the process of swell uplift. We examine swell bathymetry and island drowning at 14 hotspots and find a correspondence between island lifespan and residence time atop swell bathymetry, implying that islands drown as tectonic plate motion transports them past mantle sources of uplift. This correspondence argues strongly for dynamic uplift of the lithosphere at ocean hotspots. Our results also explain global variations in island lifespan on fast- and slow-moving tectonic plates (e.g. drowned islands in the Galápagos <4 Myr old versus islands >20 Myr old above sea level in the Canary Islands), which strongly influence island topography, biodiversity, and climate.<br><br>Over shorter timescales, paleoshorelines on hotspot ocean islands may constrain transient changes in local swell morphology. Accounting for flexural isostatic adjustment of the lithosphere to volcanic loading, we also examine patterns in the residual deflection of paleoshorelines across the Hawaiian Islands that might correspond to non-steady state behavior of the Hawaiian plume. Together, these analyses highlight the unique constraints that island paleoshorelines and topo-bathymetry can place on plume-plate interactions at ocean hotspots.</p>


2006 ◽  
Vol 7 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Paul Wessel ◽  
Yasushi Harada ◽  
Loren W. Kroenke

2021 ◽  
Author(s):  
◽  
Robin Keith Halcro Falconer

<p>Geophysical data - primarily magnetic field measurements, bathymetry, and seismicity data - are presented for the area between New Zealand and Antarctica from approximately 145[degrees]W to 155[degrees]E. The data are used to determine the structure of the Pacific-Antarctic boundary, the oceanic part of the Pacific plate and the area of intersection of the Indian, Pacific and Antarctic plates. In the southwest Pacific basin the magnetic anomalies are very clear and an extensive pattern of anomaly lineations with some offsets is mapped. The magnetic anomalies show that the uniform Pacific basin area formed between about 83 and 63 mybp. The Pacific-Antarctic boundary is shown to differ either side of about 175[degrees]W. To the east it is a relatively uniform aseismic spreading ridge, offset by some transform faults. West of 175[degrees]W, to 161[degrees]E, the boundary consists of a seismically active zone of disturbed bathymetry and magnetic anomalies striking about N.70[degrees]W. The zone, the Pacific-Antarctic fracture zone, probably consists of several fractures striking about N45[degrees]W. The area between the Pacific-Antarctic boundary and the southwest Pacific basin represents the interval 10 to -55 mybp, and only in the east are anomaly lineations clear. The Indian-Antarctic Pacific triple junction is near 61.5[degrees]S, 161[degrees]E and is a stable ridge-fault-fault junction; the Indian-Antarctic boundary being the ridge. Plate tectonics is applied to the area and the structure is shown to fit, and be explained by a different rotation pole for each of the major intervals indicated by the structure, i.e. 0-10 mybp, 10-63 mybp and 63-80 mybp. The poles, with rotation rates deduced from the magnetic anomalies, are used to reconstruct the position of New Zealand relative to Antarctica at 80 mybp. The two continents probably started to separate at close to 83 mybp. The times of the major changes of structure and plate movement in the area are shown to coincide with major plate movement changes in the southwest Pacific area and in the rest of the world. A new method for determining poles of rotation, based only on epicentre locations is presented, The method is applied to independently determine the Indian-Pacific, Pacific-Antarctic and Indian-Antarctic poles. The poles should form a consistent. set and they do. The method yields effectively instantaneous poles, is quantitative, and is applicable to most plate boundaries. Earthquake magnitude-frequency relationship b values for the plate boundaries in the area are determined. Comparisons with results from elsewhere indicate an association of high b with high temperature and conversely. Several factors which have previously been suggested as determining b value are shown to not be determinants. A revised and extended magnetic reversal time scale based on model studies of the southwest Pacific basin anomalies is presented. Other model studies indicate that a magnetized layer thickness of at least 2 km is probable. Variations of anomaly amplitudes are studied. A detailed study of the application of numerical correlation techniques to magnetic anomalies is presented. It is concluded that horizontal scale variations and discontinuities in profiles can be critical. Methods for over-coming some of the problems, and for determining quantitative error estimates, are. given. The methods, and conclusions, are applicable to any correlation problem.</p>


2021 ◽  
Author(s):  
◽  
Robin Keith Halcro Falconer

<p>Geophysical data - primarily magnetic field measurements, bathymetry, and seismicity data - are presented for the area between New Zealand and Antarctica from approximately 145[degrees]W to 155[degrees]E. The data are used to determine the structure of the Pacific-Antarctic boundary, the oceanic part of the Pacific plate and the area of intersection of the Indian, Pacific and Antarctic plates. In the southwest Pacific basin the magnetic anomalies are very clear and an extensive pattern of anomaly lineations with some offsets is mapped. The magnetic anomalies show that the uniform Pacific basin area formed between about 83 and 63 mybp. The Pacific-Antarctic boundary is shown to differ either side of about 175[degrees]W. To the east it is a relatively uniform aseismic spreading ridge, offset by some transform faults. West of 175[degrees]W, to 161[degrees]E, the boundary consists of a seismically active zone of disturbed bathymetry and magnetic anomalies striking about N.70[degrees]W. The zone, the Pacific-Antarctic fracture zone, probably consists of several fractures striking about N45[degrees]W. The area between the Pacific-Antarctic boundary and the southwest Pacific basin represents the interval 10 to -55 mybp, and only in the east are anomaly lineations clear. The Indian-Antarctic Pacific triple junction is near 61.5[degrees]S, 161[degrees]E and is a stable ridge-fault-fault junction; the Indian-Antarctic boundary being the ridge. Plate tectonics is applied to the area and the structure is shown to fit, and be explained by a different rotation pole for each of the major intervals indicated by the structure, i.e. 0-10 mybp, 10-63 mybp and 63-80 mybp. The poles, with rotation rates deduced from the magnetic anomalies, are used to reconstruct the position of New Zealand relative to Antarctica at 80 mybp. The two continents probably started to separate at close to 83 mybp. The times of the major changes of structure and plate movement in the area are shown to coincide with major plate movement changes in the southwest Pacific area and in the rest of the world. A new method for determining poles of rotation, based only on epicentre locations is presented, The method is applied to independently determine the Indian-Pacific, Pacific-Antarctic and Indian-Antarctic poles. The poles should form a consistent. set and they do. The method yields effectively instantaneous poles, is quantitative, and is applicable to most plate boundaries. Earthquake magnitude-frequency relationship b values for the plate boundaries in the area are determined. Comparisons with results from elsewhere indicate an association of high b with high temperature and conversely. Several factors which have previously been suggested as determining b value are shown to not be determinants. A revised and extended magnetic reversal time scale based on model studies of the southwest Pacific basin anomalies is presented. Other model studies indicate that a magnetized layer thickness of at least 2 km is probable. Variations of anomaly amplitudes are studied. A detailed study of the application of numerical correlation techniques to magnetic anomalies is presented. It is concluded that horizontal scale variations and discontinuities in profiles can be critical. Methods for over-coming some of the problems, and for determining quantitative error estimates, are. given. The methods, and conclusions, are applicable to any correlation problem.</p>


2021 ◽  
Vol 11 (17) ◽  
pp. 7853
Author(s):  
Lixin Ning ◽  
Chun Hui ◽  
Changxiu Cheng

The geodynamic mechanism is the research focus and core issue of plate motions and plate tectonics. Analyzing the time series of earthquakes may help us understand the relationship between two plate boundaries and further explore movement mechanisms. Therefore, this paper uses earthquake event data and the Granger causality test method to quantitatively analyze the interaction and energy transfer relationship of plate boundaries from the viewpoint of statistics. The paper aims to explore the relationship between the pull effect and the push effect of plate motion and to provide knowledge to explore seismic energy transfer relationships, and even to predict earthquakes: (1) The directions of the global plate motion field are opposite to the directions of Granger causality between plate boundaries of the Pacific, Nazca, African, Australian, Eurasian, and Philippine plates. (2) The slab-pull force (not limited to the subduction force of the ocean plates) provides a main driving force for plate motions in the Pacific plate, Nazca plate, African plate, Australian plate, Eurasian plate, and Philippine sea plate. (3) The causality relationship and optimal lag length of energy release between plate boundaries may provide another view to forecasting earthquakes.


2020 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Vrishin R. Soman

Earth’s dynamic lithospheric (plate) motions often are not obvious when considered in relation to the temporal stability of the crust. Seismic radiology experiments confirm that the extreme pressures and temperatures in the mantle, and to a lesser extent the asthenosphere, result in a heterogeneously viscous rheology. Occasionally, magmatic fluid makes its way through the lithospheric plate to the surface, appearing typically as a volcano, fissure eruption, or lava flow. When occurring away from the edges of plate boundaries, these long-lasting suppliers of lava, present over millions of years, are called mantle plumes, or ‘hotspots.’ Conventional definitions of mantle plumes note that they are stationary with respect to each other and the motion of the plates, passively tracing historical plate motion in volcanic formations such as the Hawaiian-Emperor island arc – the Plate Model. In this model, mantle plumes primarily occur as a consequence of lithospheric extension.Recent empirical studies, however, have demonstrated that hotspots are not as geographically consistent as previously thought. They may move in relation to each other, as well as contribute actively toward lithospheric plate motions – the Plume Model. There is a lively, ongoing debate between the Plate and Plume hypotheses, essentially seeking to determine if mantle flow is merely a passive reaction to lithospheric plate motion (Plate Model), or whether plume activity in part drives this motion (Plume Model). More likely, it is a combination of passive and active mantle plume components that better describe the comprehensive behavior of these important and distinctive landscape forming features.


Sign in / Sign up

Export Citation Format

Share Document