scholarly journals X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene

2016 ◽  
Vol 2 (9) ◽  
pp. e1601186 ◽  
Author(s):  
Brian Abbey ◽  
Ruben A. Dilanian ◽  
Connie Darmanin ◽  
Rebecca A. Ryan ◽  
Corey T. Putkunz ◽  
...  

X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.

Author(s):  
R. L. Stears

Because of the nature of the bacterial endospore, little work has been done on analyzing their elemental distribution and composition in the intact, living, hydrated state. The majority of the qualitative analysis entailed intensive disruption and processing of the endospores, which effects their cellular integrity and composition.Absorption edge imaging permits elemental analysis of hydrated, unstained specimens at high resolution. By taking advantage of differential absorption of x-ray photons in regions of varying elemental composition, and using a high brightness, tuneable synchrotron source to obtain monochromatic x-rays, contact x-ray micrographs can be made of unfixed, intact endospores that reveal sites of elemental localization. This study presents new data demonstrating the application of x-ray absorption edge imaging to produce elemental information about nitrogen (N) and calcium (Ca) localization using Bacillus thuringiensis as the test specimen.


2016 ◽  
Vol 23 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. G. Stepanov ◽  
C. P. Hauri

High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50–100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.


2018 ◽  
Vol 20 (2) ◽  
pp. 024005 ◽  
Author(s):  
S Serkez ◽  
G Geloni ◽  
S Tomin ◽  
G Feng ◽  
E V Gryzlova ◽  
...  

2010 ◽  
Vol 03 (01) ◽  
pp. 13-37 ◽  
Author(s):  
Jochen R. Schneider

Accelerator-based light sources stimulated progress in photon science in a truly extraordinary manner. The spectral brightness of storage-ring-based facilities increased by three orders of magnitude every 10 years since the 1960s. The extreme peak brightness at single-pass free electron X-ray lasers with pulse durations variable between about 1 and 300 femtoseconds will allow transformative experiments in many areas of science. This article is an attempt to show how progress in accelerator science and technology stimulated advancement in photon science, by discussing a limited number of examples of work at third generation storage ring facilities and free electron lasers. Hopes for further improvements in specific beam properties are expressed.


2021 ◽  
Author(s):  
Franz-Josef Decker ◽  
Karl L. Bane ◽  
William Colocho ◽  
Sasha Gilevich ◽  
Agostino Marinelli ◽  
...  

Abstract X-ray Free Electron Lasers provide femtosecond X-ray pulses with narrow bandwidth and unprecedented peak brightness. Special modes of operation have been developed to deliver double pulses for X-ray pump, X-ray probe experiments. However, the longest delay between the two pulses achieved with existing single bucket methods is less than 1 picosecond, thus preventing exploration of longer timescales dynamics. We present a novel Two-bucket scheme covering delays from 350 picoseconds to hundreds of nanoseconds in discrete steps of 350 picoseconds. Performance for each pulse can be similar to the one in single pulse operation. The method has been experimentally tested with LCLS-I and LCLS-II hard x-ray undulators.


Sign in / Sign up

Export Citation Format

Share Document