scholarly journals Urban heat island: Aerodynamics or imperviousness?

2019 ◽  
Vol 5 (4) ◽  
pp. eaau4299 ◽  
Author(s):  
Dan Li ◽  
Weilin Liao ◽  
Angela J. Rigden ◽  
Xiaoping Liu ◽  
Dagang Wang ◽  
...  

More than half of the world’s population now live in cities, which are known to be heat islands. While daytime urban heat islands (UHIs) are traditionally thought to be the consequence of less evaporative cooling in cities, recent work sparks new debate, showing that geographic variations of daytime UHI intensity were largely explained by variations in the efficiency with which urban and rural areas convect heat from the land surface to the lower atmosphere. Here, we reconcile this debate by demonstrating that the difference between the recent finding and the traditional paradigm can be explained by the difference in the attribution methods. Using a new attribution method, we find that spatial variations of daytime UHI intensity are more controlled by variations in the capacity of urban and rural areas to evaporate water, suggesting that strategies enhancing the evaporation capability such as green infrastructure are effective ways to mitigate urban heat.

2021 ◽  
pp. 65-75
Author(s):  
Tomislav Đorđević

The benefits of urban blue-green infrastructures are well known: they intercept airborne three-atom particles, thus reducing pollution levels; and they provide shade and cooling by means of evapotranspiration. The focus of this paper is to demonstrate methods such as remote sensing and multi-spectral analysis, which can be a very useful addition to the quantification of blue-green infrastructures for cooling and shading, especially in the highly complex geometry of city blocks. The basic aim of this research is to attempt to reduce urban heat islands and in this way to indirectly increase the comfort of living. A cause/ effect relationship between the envelope of built up structures and the solar radiation distribution on the environment was established by means of multi-spectral analysis, and an estimation was made concerning the lack of vegetation on a specific parcel/block (an important tool for urban planners). This state-of-the-art methodology was applied to the optimized prediction concept of vegetation resources. Now it is possible to create a model that will incorporate this newly-added urban vegetation into urban plans, depending on the evaporation potential that will affect the microclimate of the urban area. Such natural cooling can be measured and adapted and hence aimed at a potential decrease in temperature in areas with UHI emissions. As a case study, part of a seacoast urban block (Abu Dhabi UE,) was analysed with and without a street treeline and green façades and roofs. It was concluded that green infrastructure reduced the land surface temperature by up to 4.5˚C.


2014 ◽  
Vol 38 (4) ◽  
pp. 431-447 ◽  
Author(s):  
Fang Zhang ◽  
Xiaoming Cai ◽  
John E. Thornes

This study investigates the characteristics of the air and surface urban heat islands (aUHI and sUHI) of Birmingham in relation to Lamb weather types (LWTs) over the period 2002–2007, with a particular focus on cloudless anticyclonic conditions. Ground-based MIDAS air temperatures within the urban canopy layer at the urban Edgbaston and rural Shawbury weather stations were used to derive the aUHI intensity (aUHII). Satellite-derived MODIS/Aqua land surface temperatures (LST) under cloudless conditions were used to derive the spatial patterns of the sUHI as well as the sUHI intensity (sUHII). Using Jenkinson’s objective daily synoptic indices, a combined subset of 11 LWTs were examined for their association with the nocturnal aUHI. Over the study period, the most frequently occurring LWT, ‘anticyclonic’ (21.1%), gives a strongest mean/maximum nocturnal aUHII of 2.5°C/7°C (391 nights) and the largest proportion of nocturnal heat island events of 65.2%. The spatial patterns of nocturnal sUHI for each LWT were also assessed, and the results demonstrate Birmingham’s urban warming of up to 4.16°C (48 clear nights) in the city centre under cloudless anticyclonic conditions. The scatter plot of nocturnal aUHII and sUHII for the 48 nights demonstrates a linear relationship. We also developed a simple analytical model that links the slope of the aUHII–sUHII relationship to the difference of ‘built-up’ area fraction between the urban pixel and the rural pixel in satellite imagery of land cover. This partially explains the physical basis behind the relationship. These findings of the aUHII–sUHII relationship may lead to the future development of a generic methodology of deriving the spatial patterns of aUHI from satellite measurements.


Author(s):  
E. N. Sutyrina ◽  

The investigation is aimed to determine the boundaries and intensity of urban heat islands in the Irkutsk region and assess the change in these parameters over a long-term period. The formation of an urban heat island is an example of anthropogenic influence on the urban climate. Land surface temperature and its spatial and temporal variations can be used to study urban heat islands, since the difference between the land surface temperature within the city and its surroundings is the result of the transformation of the underlying surface, heat capacity and three-dimensional structure of urban buildings in the process of urbanization. In order to study the phenomenon of urban heat islands of cities of the Irkutsk region, the land surface temperature data reconstructed from AVHRR-based thermal infrared imagery for 1998-2019 was used. As a result of the study, multi-temporal maps showing the urban heat islands of the agglomeration of Irkutsk-Angarsk-Shelekhov and the city of Bratsk were obtained. The investigated heat islands are characterized by a significant diurnal dynamic, so the difference in temperature values between the city and the suburbs in summer daytime reached 8-10 °C, in the evening and at night in summer this parameter decreases to 3-5 °C. The dimensions of the urban heat islands of the cities under investigation in the daytime exceed the dimensions of these heat anomalies in the evening and at night. Interannual variability in the intensity of urban heat islands did not show statistically significant trends from 1998 to 2019, the areas of urban heat islands increased significantly over the study period. The observed increase in area was probably associated with the development of the cities under study, with the transformation of landscapes and a decrease in the density of vegetation in the suburbs. In order to assess the contribution of the lack of vegetation to the formation of the urban heat islands in summer daytime, the values of the land surface temperature were compared with the values of the vegetation index NDVI. An analysis of the relationships between these parameters found that daytime land surface temperature was in close inverse relationship with the NDVI value, while this relationship was less pronounced at night and in the evening.


Environments ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 105
Author(s):  
Cátia Rodrigues de Almeida ◽  
Ana Cláudia Teodoro ◽  
Artur Gonçalves

Urban Heat Islands (UHI) consist of the occurrence of higher temperatures in urbanized areas when compared to rural areas. During the warmer seasons, this effect can lead to thermal discomfort, higher energy consumption, and aggravated pollution effects. The application of Remote Sensing (RS) data/techniques using thermal sensors onboard satellites, drones, or aircraft, allow for the estimation of Land Surface Temperature (LST). This article presents a systematic review of publications in Scopus and Web of Science (WOS) on UHI analysis using RS data/techniques and LST, from 2000 to 2020. The selection of articles considered keywords, title, abstract, and when deemed necessary, the full text. The process was conducted by two independent researchers and 579 articles, published in English, were selected. Qualitative and quantitative analyses were performed. Cfa climate areas are the most represented, as the Northern Hemisphere concentrates the most studied areas, especially in Asia (69.94%); Landsat products were the most applied to estimates LST (68.39%) and LULC (55.96%); ArcGIS (30.74%) was most used software for data treatment, and correlation (38.69%) was the most applied statistic technique. There is an increasing number of publications, especially from 2016, and the transversality of UHI studies corroborates the relevance of this topic.


Author(s):  
Chi Chen ◽  
Dan Li ◽  
Trevor F. Keenan

Abstract Satellite observations show that the surface urban heat island intensity (SUHII) has been increasing over the last two decades. This is often accompanied by an increased urban-rural contrast of vegetation greenness. However, the contribution of uneven vegetation trends in urban and rural areas to the trend of SUHII is unclear, due to the confounding effects of climate change and changes in man-made amenities and anthropogenic heat sources. Here we use a data-model fusion approach to quantify such contributions during the peak growing season. We show that the LAIdif (the urban-rural difference of leaf area index) is increasing (P<0.05) in 189 of the selected 228 global megacities. The increasing trend of LAIdif from 2000 to 2019 accounts for about one quarter of the trend in satellite-derived SUHII, and the impact is particularly evident in places with rapid urbanization and rural cropland intensification. The marginal sensitivity of SUHII to LAIdif is the strongest in hot-humid megacities surrounded by croplands and in hot-dry megacities surrounded by mixed woody and herbaceous vegetation. Our study highlights the role of long-term vegetation trends in modulating the trends of urban-rural temperature differences.


Author(s):  
Clare Heaviside

Towns and cities generally exhibit higher temperatures than rural areas for a number of reasons, including the effect that urban materials have on the natural balance of incoming and outgoing energy at the surface level, the shape and geometry of buildings, and the impact of anthropogenic heating. This localized heating means that towns and cities are often described as urban heat islands (UHIs). Urbanized areas modify local temperatures, but also other meteorological variables such as wind speed and direction and rainfall patterns. The magnitude of the UHI for a given town or city tends to scale with the size of population, although smaller towns of just thousands of inhabitants can have an appreciable UHI effect. The UHI “intensity” (the difference in temperature between a city center and a rural reference point outside the city) is on the order of a few degrees Celsius on average, but can peak at as much as 10°C in larger cities, given the right conditions. UHIs tend to be enhanced during heatwaves, when there is lots of sunshine and a lack of wind to provide ventilation and disperse the warm air. The UHI is most pronounced at night, when rural areas tend to be cooler than cities and urban materials radiate the energy they have stored during the day into the local atmosphere. As well as affecting local weather patterns and interacting with local air pollution, the UHI can directly affect health through heat exposure, which can exacerbate minor illnesses, affect occupational performance, or increase the risk of hospitalization and even death. Urban populations can face serious risks to health during heatwaves whereby the heat associated with the UHI contributes additional warming. Heat-related health risks are likely to increase in future against a background of climate change and increasing urbanization throughout much of the world. However, there are ways to reduce urban temperatures and avoid some of the health impacts of the UHI through behavioral changes, modification of buildings, or by urban scale interventions. It is important to understand the physical properties of the UHI and its impact on health to evaluate the potential for interventions to reduce heat-related impacts.


Author(s):  
K. Dutta ◽  
D. Basu ◽  
S. Agrawal

<p><strong>Abstract.</strong> Urban environment is examined through time series Landsat TM (Thematic Mapper) and OLI/TIRS (Operational Land Imager &amp;amp; Thermal Infrared Sensor) sensor images. A continuous surface of Land Surface Temperature (LST) can be extracted from Landsat thermal bands. Similarly different band combinations and ratios will give spatial pattern of land cover categories. Among these, building and vegetation indices are used to characterize the spatiotemporal pattern of elevated temperature zones in cities. This excess heat concentration creates thermal hotspots which are known as Urban Heat Islands (UHI). Parameters of land cover are then related to LST to detect the influence of urbanization on intensity and extent of heat islands, by pixel based quantitative analysis. This paper focuses on two megacities of India and their surrounding districts for identifying the critical UHI areas. The purpose of this paper is to create a database for reconstruction in old cities and planning of new smart cities. Results suggest that urban sprawl and substitution of rural areas with impervious surface plays significant role in microclimate, causing formation of new thermal hotspots. The analysis of urban thermal environment and its dynamics is to provide a scientific basis for future strategy building.</p>


2021 ◽  
Vol 13 (16) ◽  
pp. 3177
Author(s):  
Talha Hassan ◽  
Jiahua Zhang ◽  
Foyez Ahmed Prodhan ◽  
Til Prasad Pangali Sharma ◽  
Barjeece Bashir

Urbanization is an increasing phenomenon around the world, causing many adverse effects in urban areas. Urban heat island is are of the most well-known phenomena. In the present study, surface urban heat islands (SUHI) were studied for seven megacities of the South Asian countries from 2000–2019. The urban thermal environment and relationship between land surface temperature (LST), land use landcover (LULC) and vegetation were examined. The connection was explored with remote-sensing indices such as urban thermal field variance (UTFVI), surface urban heat island intensity (SUHII) and normal difference vegetation index (NDVI). LULC maps are classified using a CART machine learning classifier, and an accuracy table was generated. The LULC change matrix shows that the vegetated areas of all the cities decreased with an increase in the urban areas during the 20 years. The average LST in the rural areas is increasing compared to the urban core, and the difference is in the range of 1–2 (°C). The SUHII linear trend is increasing in Delhi, Karachi, Kathmandu, and Thimphu, while decreasing in Colombo, Dhaka, and Kabul from 2000–2019. UTFVI has shown the poor ecological conditions in all urban buffers due to high LST and urban infrastructures. In addition, a strong negative correlation between LST and NDVI can be seen in a range of −0.1 to −0.6.


Author(s):  
Pieter Snyman ◽  
A. Stephen Steyn

Urban heat islands (UHIs) are characterised by warmer urban air temperatures compared to rural air temperatures, and the intensity is equal to the difference between the two. Air temperatures are measured at various sites across the city of Bloemfontein and then analysed to determine the UHI characteristics. The UHI is found to have a horseshoe shape and reaches a maximum intensity of 8.2 °C at 22:00. The UHI is largely affected by the local topography.


Sign in / Sign up

Export Citation Format

Share Document