scholarly journals No evidence of ongoing HIV replication or compartmentalization in tissues during combination antiretroviral therapy: Implications for HIV eradication

2019 ◽  
Vol 5 (9) ◽  
pp. eaav2045 ◽  
Author(s):  
G. Bozzi ◽  
F. R. Simonetti ◽  
S. A. Watters ◽  
E. M. Anderson ◽  
M. Gouzoulis ◽  
...  

HIV persistence during combination antiretroviral therapy (cART) is the principal obstacle to cure. Mechanisms responsible for persistence remain uncertain; infections may be maintained by persistence and clonal expansion of infected cells or by ongoing replication in anatomic locations with poor antiretroviral penetration. These mechanisms require different strategies for eradication, and determining their contributions to HIV persistence is essential. We used phylogenetic approaches to investigate, at the DNA level, HIV populations in blood, lymphoid, and other infected tissues obtained at colonoscopy or autopsy in individuals who were on cART for 8 to 16 years. We found no evidence of ongoing replication or compartmentalization of HIV; we did detect clonal expansion of infected cells that were present before cART. Long-term persistence, and not ongoing replication, is primarily responsible for maintaining HIV. HIV-infected cells present when cART is initiated represent the only identifiable source of persistence and is the appropriate focus for eradication.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1134
Author(s):  
Mary Grace Katusiime ◽  
Gert U. Van Zyl ◽  
Mark F. Cotton ◽  
Mary F. Kearney

There is a growing number of perinatally HIV-1-infected children worldwide who must maintain life-long ART. In early life, HIV-1 infection is established in an immunologically inexperienced environment in which maternal ART and immune dynamics during pregnancy play a role in reservoir establishment. Children that initiated early antiretroviral therapy (ART) and maintained long-term suppression of viremia have smaller and less diverse HIV reservoirs than adults, although their proviral landscape during ART is reported to be similar to that of adults. The ability of these early infected cells to persist long-term through clonal expansion poses a major barrier to finding a cure. Furthermore, the effects of life-long HIV persistence and ART are yet to be understood, but growing evidence suggests that these individuals are at an increased risk for developing non-AIDS-related comorbidities, which underscores the need for an HIV cure.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Rachel L. Miller ◽  
Rosalie Ponte ◽  
Bradley R. Jones ◽  
Natalie N. Kinloch ◽  
Fredrick H. Omondi ◽  
...  

ABSTRACTHIV's ability to persist during suppressive antiretroviral therapy is the main barrier to cure. Immune-privileged tissues, such as the testes, may constitute distinctive sites of HIV persistence, but this has been challenging to study in humans. We analyzed the proviral burden and genetics in the blood and testes of 10 individuals on suppressive therapy who underwent elective gender-affirming surgery. HIV DNA levels in matched blood and testes were quantified by quantitative PCR, and subgenomic proviral sequences (nefregion) were characterized from single templates. HIV diversity, compartmentalization, and immune escape burden were assessed using genetic and phylogenetic approaches. Diverse proviruses were recovered from the blood (396 sequences; 354nef-intact sequences) and testes (326 sequences; 309nef-intact sequences) of all participants. Notably, the frequency of identical HIV sequences varied markedly between and within individuals. Nevertheless, proviral loads, within-host unique HIV sequence diversity, and the immune escape burden correlated positively between blood and testes. When all intactnefsequences were evaluated, 60% of participants exhibited significant blood-testis genetic compartmentalization, but none did so when the evaluation was restricted to unique sequences per site, suggesting that compartmentalization, when present, is attributable to the clonal expansion of HIV-infected cells. Our observations confirm the testes as a site of HIV persistence and suggest that individuals with larger and more diverse blood reservoirs will have larger and more diverse testis reservoirs. Furthermore, while the testis microenvironment may not be sufficiently unique to facilitate the seeding of unique viral populations therein, differential clonal expansion dynamics may be at play, which may complicate HIV eradication.IMPORTANCETwo key questions in HIV reservoir biology are whether immune-privileged tissues, such as the testes, harbor distinctive proviral populations during suppressive therapy and, if so, by what mechanism. While our results indicated that blood-testis HIV genetic compartmentalization was reasonably common (60%), it was always attributable to differential frequencies of identical HIV sequences between sites. No blood-tissue data set retained evidence of compartmentalization when only unique HIV sequences per site were considered; moreover, HIV immune escape mutation burdens were highly concordant between sites. We conclude that the principal mechanism by which blood and testis reservoirs differ is not via seeding of divergent HIV sequences therein but, rather, via differential clonal expansion of latently infected cells. Thus, while viral diversity and escape-related barriers to HIV eradication are of a broadly similar magnitude across the blood and testes, clonal expansion represents a challenge. The results support individualized analysis of within-host reservoir diversity to inform curative approaches.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Xiaomin Li ◽  
Zhaoli Liu ◽  
Qijuan Li ◽  
Ronglin Hu ◽  
Lu Zhao ◽  
...  

ABSTRACT The presence of an extremely stable latent reservoir of HIV-1 is the major obstacle to eradication, despite effective antiretroviral therapy (ART). Recent studies have shown that clonal expansion of latently infected cells without viral reactivation is an important phenomenon that maintains the long-term stability of the reservoir, yet its underlying mechanism remains unclear. Here we report that a subset of CD4+ T cells, characterized by CD161 expression on the surface, is highly permissive for HIV-1 infection. These cells possess a significantly higher survival and proliferative capacity than their CD161-negative counterparts. More importantly, we found that these cells harbor HIV-1 DNA and replication-competent latent viruses at a significantly higher frequency. By using massive single-genome proviral sequencing from ART-suppressed individuals, we confirm that CD161+ CD4+ T cells contain remarkably more identical proviral sequences, indicating clonal expansion of the viral genome in these cells. Taking the results together, our study identifies infected CD161+ CD4+ T cells to be a critical force driving the clonal expansion of the HIV-1 latent reservoir, providing a novel mechanism for the long-term stability of HIV-1 latency. IMPORTANCE The latent reservoir continues to be the major obstacle to curing HIV-1 infection. The clonal expansion of latently infected cells adds another layer maintaining the long-term stability of the reservoir, but its mechanism remains unclear. Here, we report that CD161+ CD4+ T cells serve as an important compartment of the HIV-1 latent reservoir and contain a significant amount of clonally expanded proviruses. In our study, we describe a feasible strategy that may reduce the size of the latent reservoir to a certain extent by counterbalancing the repopulation and dissemination of latently infected cells.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Bradley R. Jones ◽  
Rachel L. Miller ◽  
Natalie N. Kinloch ◽  
Olivia Tsai ◽  
Hawley Rigsby ◽  
...  

ABSTRACT The HIV reservoir, which comprises diverse proviruses integrated into the genomes of infected, primarily CD4+ T cells, is the main barrier to developing an effective HIV cure. Our understanding of the genetics and dynamics of proviruses persisting within distinct CD4+ T cell subsets, however, remains incomplete. Using single-genome amplification, we characterized subgenomic proviral sequences (nef region) from naive, central memory, transitional memory, and effector memory CD4+ T cells from five HIV-infected individuals on long-term combination antiretroviral therapy (cART) and compared these to HIV RNA sequences isolated longitudinally from archived plasma collected prior to cART initiation, yielding HIV data sets spanning a median of 19.5 years (range, 10 to 20 years) per participant. We inferred a distribution of within-host phylogenies for each participant, from which we characterized proviral ages, phylogenetic diversity, and genetic compartmentalization between CD4+ T cell subsets. While three of five participants exhibited some degree of proviral compartmentalization between CD4+ T cell subsets, combined analyses revealed no evidence that any particular CD4+ T cell subset harbored the longest persisting, most genetically diverse, and/or most genetically distinctive HIV reservoir. In one participant, diverse proviruses archived within naive T cells were significantly younger than those in memory subsets, while for three other participants we observed no significant differences in proviral ages between subsets. In one participant, “old” proviruses were recovered from all subsets, and included one sequence, estimated to be 21.5 years old, that dominated (>93%) their effector memory subset. HIV eradication strategies will need to overcome within- and between-host genetic complexity of proviral landscapes, possibly via personalized approaches. IMPORTANCE The main barrier to HIV cure is the ability of a genetically diverse pool of proviruses, integrated into the genomes of infected CD4+ T cells, to persist despite long-term suppressive combination antiretroviral therapy (cART). CD4+ T cells, however, constitute a heterogeneous population due to their maturation across a developmental continuum, and the genetic “landscapes” of latent proviruses archived within them remains incompletely understood. We applied phylogenetic techniques, largely novel to HIV persistence research, to reconstruct within-host HIV evolutionary history and characterize proviral diversity in CD4+ T cell subsets in five individuals on long-term cART. Participants varied widely in terms of proviral burden, genetic diversity, and age distribution between CD4+ T cell subsets, revealing that proviral landscapes can differ between individuals and between infected cell types within an individual. Our findings expose each within-host latent reservoir as unique in its genetic complexity and support personalized strategies for HIV eradication.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 136 ◽  
Author(s):  
Elizabeth M. Anderson ◽  
Francesco R. Simonetti ◽  
Robert J. Gorelick ◽  
Shawn Hill ◽  
Monica A. Gouzoulis ◽  
...  

Combination antiretroviral therapy (cART) controls but does not eradicate HIV infection; HIV persistence is the principal obstacle to curing infections. The proportion of defective proviruses increases during cART, but the dynamics of this process are not well understood, and a quantitative analysis of how the proviral landscape is reshaped after cART is initiated is critical to understanding how HIV persists. Here, we studied longitudinal samples from HIV infected individuals undergoing long term cART using multiplexed Droplet Digital PCR (ddPCR) approaches to quantify the proportion of deleted proviruses in lymphocytes. In most individuals undergoing cART, HIV proviruses that contain gag are lost more quickly than those that lack gag. Increases in the fraction of gag-deleted proviruses occurred only after 1–2 years of therapy, suggesting that the immune system, and/or toxicity of viral re-activation helps to gradually shape the proviral landscape. After 10–15 years on therapy, there were as many as 3.5–5 times more proviruses in which gag was deleted or highly defective than those containing intact gag. We developed a provirus-specific ddPCR approach to quantify individual clones. Investigation of a clone of cells containing a deleted HIV provirus integrated in the HORMAD2 gene revealed that the cells underwent a massive expansion shortly after cART was initiated until the clone, which was primarily in effector memory cells, dominated the population of proviruses for over 6 years. The expansion of this HIV-infected clone had substantial effects on the overall proviral population.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e111400 ◽  
Author(s):  
Fred Stephen Sarfo ◽  
Maame Anima Sarfo ◽  
Betty Norman ◽  
Richard Phillips ◽  
George Bedu-Addo ◽  
...  

2013 ◽  
Vol 167 (6) ◽  
pp. 520 ◽  
Author(s):  
Steven E. Lipshultz ◽  
Paige L. Williams ◽  
James D. Wilkinson ◽  
Erin C. Leister ◽  
Russell B. Van Dyke ◽  
...  

Author(s):  
Saira Ajmal ◽  
Zelalem Temesgen

The primary goal of therapy is to prevent HIV-associated morbidity and mortality. In addition to the dramatic decline in HIV-related illness and death that has been observed as a result of the introduction and expansion of combination antiretroviral therapy, evidence is emerging that uncontrolled HIV replication also has a deleterious impact on conditions that are not conventionally associated with immune deficiency. These conditions include cardiovascular disease, kidney disease, liver disease, neurologic complications, and malignancy. Studies have found an independent association between cumulative exposure to replicating virus over time and mortality. Emerging data also increasingly support the earlier use of ART.


Sign in / Sign up

Export Citation Format

Share Document