scholarly journals Histone demethylase LSD1 is critical for endochondral ossification during bone fracture healing

2020 ◽  
Vol 6 (45) ◽  
pp. eaaz1410
Author(s):  
Jun Sun ◽  
Heng Feng ◽  
Wenhui Xing ◽  
Yujiao Han ◽  
Jinlong Suo ◽  
...  

Bone fracture is repaired predominantly through endochondral ossification. However, the regulation of endochondral ossification by key factors during fracture healing remains largely enigmatic. Here, we identify histone modification enzyme LSD1 as a critical factor regulating endochondral ossification during bone regeneration. Loss of LSD1 in Prx1 lineage cells severely impaired bone fracture healing. Mechanistically, LSD1 tightly controls retinoic acid signaling through regulation of Aldh1a2 expression level. The increased retinoic acid signaling in LSD1-deficient mice suppressed SOX9 expression and impeded the cartilaginous callus formation during fracture repair. The discovery that LSD1 can regulate endochondral ossification during fracture healing will benefit the understanding of bone regeneration and have implications for regenerative medicine.

Author(s):  
Christopher D. Kegelman ◽  
Madhura P. Nijsure ◽  
Yasaman Moharrer ◽  
Hope B. Pearson ◽  
James H. Dawahare ◽  
...  

ABSTRACTIn response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture, or by developmental deficiencies in the progenitor cell pool prior to fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx1-CretetOff) in which YAP and TAZ were deleted prior to fracture, but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation, but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf, prior to the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing.


2019 ◽  
Vol 20 (5) ◽  
pp. 1079 ◽  
Author(s):  
Sopak Supakul ◽  
Kenta Yao ◽  
Hiroki Ochi ◽  
Tomohito Shimada ◽  
Kyoko Hashimoto ◽  
...  

Pericytes are mesenchymal cells that surround the endothelial cells of small vessels in various organs. These cells express several markers, such as NG2, CD146, and PDGFRβ, and play an important role in the stabilization and maturation of blood vessels. It was also recently revealed that like mesenchymal stem cells (MSCs), pericytes possess multilineage differentiation capacity, especially myogenic, adipogenic, and fibrogenic differentiation capacities. Although some previous studies have reported that pericytes also have osteogenic potential, the osteogenesis of pericytes can still be further elucidated. In the present study, we established novel methods for isolating and culturing primary murine pericytes. An immortalized pericyte line was also established. Multilineage induction of the pericyte line induced osteogenesis, adipogenesis, and chondrogenesis of the cells in vitro. In addition, pericytes that were injected into the fracture site of a bone fracture mouse model contributed to callus formation. Furthermore, in vivo pericyte-lineage-tracing studies demonstrated that endogenous pericytes also differentiate into osteoblasts and osteocytes and contribute to bone fracture healing as a cellular source of osteogenic cells. Pericytes can be a promising therapeutic candidate for treating bone fractures with a delayed union or nonunion as well as bone diseases causing bone defects.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
K. Jäckle ◽  
J. P. Kolb ◽  
A. F. Schilling ◽  
C. Schlickewei ◽  
M. Amling ◽  
...  

Abstract Background Osteoporosis affects elderly patients of both sexes. It is characterized by an increased fracture risk due to defective remodeling of the bone microarchitecture. It affects in particular postmenopausal women due to their decreased levels of estrogen. Preclinical studies with animals demonstrated that loss of estrogen had a negative effect on bone healing and that increasing the estrogen level led to a better bone healing. We asked whether increasing the estrogen level in menopausal patients has a beneficial effect on bone mineral density (BMD) during callus formation after a bone fracture. Methods To investigate whether estrogen has a beneficial effect on callus BMD of postmenopausal patients, we performed a prospective double-blinded randomized study with 76 patients suffering from distal radius fractures. A total of 31 patients (71.13 years ±11.99) were treated with estrogen and 45 patients (75.62 years ±10.47) served as untreated controls. Calculated bone density as well as cortical bone density were determined by peripheral quantitative computed tomography (pQCT) prior to and 6 weeks after the surgery. Comparative measurements were performed at the fractured site and at the corresponding position of the non-fractured arm. Results We found that unlike with preclinical models, bone fracture healing of human patients was not improved in response to estrogen treatment. Furthermore, we observed no dependence between age-dependent bone tissue loss and constant callus formation in the patients. Conclusions Transdermally applied estrogen to postmenopausal women, which results in estrogen levels similar to the systemic level of premenopausal women, has no significant beneficial effect on callus BMD as measured by pQCT, as recently shown in preclinical animal models. Trial registration Low dose estrogen has no significant effect on bone fracture healing measured by pQCT in postmenopausal women, DRKS00019858. Registered 25th November 2019 - Retrospectively registered. Trial registration number DRKS00019858.


Author(s):  
María José Gómez-Benito ◽  
Libardo Andrés González-Torres ◽  
Esther Reina-Romo ◽  
Jorge Grasa ◽  
Belén Seral ◽  
...  

Mechanical stimulation affects the evolution of healthy and fractured bone. However, the effect of applying cyclical mechanical stimuli on bone healing has not yet been fully clarified. The aim of the present study was to determine the influence of a high-frequency and low-magnitude cyclical displacement of the fractured fragments on the bone-healing process. This subject is studied experimentally and computationally for a sheep long bone. On the one hand, the mathematical computational study indicates that mechanical stimulation at high frequencies can stimulate and accelerate the process of chondrogenesis and endochondral ossification and consequently the bony union of the fracture. This is probably achieved by the interstitial fluid flow, which can move nutrients and waste from one place to another in the callus. This movement of fluid modifies the mechanical stimulus on the cells attached to the extracellular matrix. On the other hand, the experimental study was carried out using two sheep groups. In the first group, static fixators were implanted, while, in the second one, identical devices were used, but with an additional vibrator. This vibrator allowed a cyclic displacement with low magnitude and high frequency (LMHF) to be applied to the fractured zone every day; the frequency of stimulation was chosen from mechano-biological model predictions. Analysing the results obtained for the control and stimulated groups, we observed improvements in the bone-healing process in the stimulated group. Therefore, in this study, we show the potential of computer mechano-biological models to guide and define better mechanical conditions for experiments in order to improve bone fracture healing. In fact, both experimental and computational studies indicated improvements in the healing process in the LMHF mechanically stimulated fractures. In both studies, these improvements could be associated with the promotion of endochondral ossification and an increase in the rate of cell proliferation and tissue synthesis.


2020 ◽  
Vol 21 (2) ◽  
pp. 677 ◽  
Author(s):  
Hiroaki Takebe ◽  
Nazmus Shalehin ◽  
Akihiro Hosoya ◽  
Tsuyoshi Shimo ◽  
Kazuharu Irie

Bone fracture healing involves the combination of intramembranous and endochondral ossification. It is known that Indian hedgehog (Ihh) promotes chondrogenesis during fracture healing. Meanwhile, Sonic hedgehog (Shh), which is involved in ontogeny, has been reported to be involved in fracture healing, but the details had not been clarified. In this study, we demonstrated that Shh participated in fracture healing. Six-week-old Sprague–Dawley rats and Gli-CreERT2; tdTomato mice were used in this study. The right rib bones of experimental animals were fractured. The localization of Shh and Gli1 during fracture healing was examined. The localization of Gli1 progeny cells and osterix (Osx)-positive cells was similar during fracture healing. Runt-related transcription factor 2 (Runx2) and Osx, both of which are osteoblast markers, were observed on the surface of the new bone matrix and chondrocytes on day seven after fracture. Shh and Gli1 were co-localized with Runx2 and Osx. These findings suggest that Shh is involved in intramembranous and endochondral ossification during fracture healing.


Bone ◽  
2018 ◽  
Vol 106 ◽  
pp. 78-89 ◽  
Author(s):  
Claudia Schlundt ◽  
Thaqif El Khassawna ◽  
Alessandro Serra ◽  
Anke Dienelt ◽  
Sebastian Wendler ◽  
...  

Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100740
Author(s):  
Smriti Ghimire ◽  
Saeed Miramini ◽  
Glenn Edwards ◽  
Randi Rotne ◽  
Jiake Xu ◽  
...  

2020 ◽  
Author(s):  
Katharina Blanka Dr. Jäckle ◽  
Jan Philipp Kolb ◽  
Arndt F Schilling ◽  
Carsten Schlickewei ◽  
Michael Amling ◽  
...  

Abstract Background: Osteoporosis affects elderly patients of both sexes. It is characterized by an increased fracture risk due to defective remodeling of the bone microarchitecture. It affects in particular postmenopausal women due to their decreased levels of estrogen. Preclinical studies with animals demonstrated that loss of estrogen had a negative effect on bone healing and that increasing the estrogen level led to a better bone healing. We asked whether increasing the estrogen level in menopausal patients has a beneficial effect on bone mineral density (BMD) during callus formation after a bone fracture.Methods: To investigate whether estrogen has a beneficial effect on callus BMD of postmenopausal patients, we performed a prospective double-blinded randomized study with 76 patients suffering from distal radius fractures. A total of 31 patients (71.13 years ± 11.99) were treated with estrogen and 45 patients (75.62 years ± 10.47) served as untreated controls. Calculated bone density as well as cortical bone density were determined by peripheral quantitative computed tomography (pQCT) prior to and six weeks after the surgery. Comparative measurements were performed at the fractured site and at the corresponding position of the non-fractured arm.Results: We found that unlike with preclinical models, bone fracture healing of human patients was not improved in response to estrogen treatment. Furthermore, we observed no dependence between age-dependent bone tissue loss and constant callus formation in the patients.Conclusions: Transdermally applied estrogen to postmenopausal women, which results in estrogen levels similar to the systemic level of premenopausal women, has no significant beneficial effect on callus BMD as measured by pQCT, as recently shown in preclinical animal models.Trial registration: Low dose estrogen has no significant effect on bone fracture healing measured by pQCT in postmenopausal women, DRKS00019858. Registered 25th November 2019 - Retrospectively registered. Trial registration number DRKS00019858.


2018 ◽  
Vol 7 (6) ◽  
pp. 397-405 ◽  
Author(s):  
M. W. Morcos ◽  
H. Al-Jallad ◽  
J. Li ◽  
C. Farquharson ◽  
J. L. Millán ◽  
...  

Objectives Bone fracture healing is regulated by a series of complex physicochemical and biochemical processes. One of these processes is bone mineralization, which is vital for normal bone development. Phosphatase, orphan 1 (PHOSPHO1), a skeletal tissue-specific phosphatase, has been shown to be involved in the mineralization of the extracellular matrix and to maintain the structural integrity of bone. In this study, we examined how PHOSPHO1 deficiency might affect the healing and quality of fracture callus in mice. Methods Tibial fractures were created and then stabilized in control wild-type (WT) and Phospho1-/- mice (n = 16 for each group; mixed gender, each group carrying equal number of male and female mice) at eight weeks of age. Fractures were allowed to heal for four weeks and then the mice were euthanized and their tibias analyzed using radiographs, micro-CT (μCT), histology, histomorphometry and three-point bending tests. Results The μCT and radiographic analyses revealed a mild reduction of bone volume in Phospho1-/- callus, although it was not statistically significant. An increase in trabecular number and a decrease in trabecular thickness and separation were observed in Phospho1-/- callus in comparison with the WT callus. Histomorphometric analyses showed that there was a marked increase of osteoid volume over bone volume in the Phospho1-/- callus. The three-point bending test showed that Phospho1-/- fractured bone had more of an elastic characteristic than the WT bone. Conclusion Our work suggests that PHOSPHO1 plays an integral role during bone fracture repair and may be a therapeutic target to improve the fracture healing process. Cite this article: M. W. Morcos, H. Al-Jallad, J. Li, C. Farquharson, J. L. Millán, R. C. Hamdy, M. Murshed. PHOSPHO1 is essential for normal bone fracture healing: An Animal Study. Bone Joint Res 2018;7:397–405. DOI: 10.1302/2046-3758.76.BJR-2017-0140.R2.


Sign in / Sign up

Export Citation Format

Share Document