scholarly journals Trophic strategy and bleaching resistance in reef-building corals

2020 ◽  
Vol 6 (15) ◽  
pp. eaaz5443 ◽  
Author(s):  
Inga E. Conti-Jerpe ◽  
Philip D. Thompson ◽  
Cheong Wai Martin Wong ◽  
Nara L. Oliveira ◽  
Nicolas N. Duprey ◽  
...  

Ocean warming increases the incidence of coral bleaching, which reduces or eliminates the nutrition corals receive from their algal symbionts, often resulting in widespread mortality. In contrast to extensive knowledge on the thermal tolerance of coral-associated symbionts, the role of the coral host in bleaching patterns across species is poorly understood. Here, we applied a Bayesian analysis of carbon and nitrogen stable isotope data to determine the trophic niche overlap between corals and their symbionts and propose benchmark values that define autotrophy, heterotrophy, and mixotrophy. The amount of overlap between coral and symbiont niche was negatively correlated with polyp size and bleaching resistance. Our results indicated that as oceans warm, autotrophic corals lose their competitive advantage and thus are the first to disappear from coral reefs.

2020 ◽  
Author(s):  
Doron Pinko ◽  
Sigal Abramovich ◽  
Danna Titelboim

Abstract. Understanding the response of marine organisms to expected future warming is essential. Large Benthic Foraminifera (LBF) are symbiont bearing protists considered to be major carbonate producers and ecosystems engineers. We examined the thermal tolerance of two main types of LBF holobionts characterized by different algal symbionts and shell types (resulted from alternative biomineralization mechanisms): The hyaline diatom bearing, Amphistegina lobifera, and the porcelaneous dinoflagellate bearing, Sorites orbiculus. To assess the relative contribution of host and symbiont algae to the holobiont thermal tolerance we separately evaluated their response by measuring calcification rates and photosynthetic activity under present-day and future warming scenarios. Our results show that both holobionts exhibit thermal resilience up to 32 °C and sensitivity to 35 °C. This sensitivity differs in the magnitude of their response: calcification of A. lobifera was completely inhibited while it was only reduced in S. orbiculus. Thus, future warming will significantly shift the relative contribution of the two species as carbonate producers. Moreover, A. lobifera exhibited a synchronized response of the host and symbionts. In contrast, in S. orbiculus the symbionts responded prior to the host, possibly limiting its resilience. Our results also demonstrate the role of pre-exposure and acclimation processes of host, symbionts or both in mitigating future warming. It highlights the possibility that while pre-exposure to moderate temperatures benefits the holobiont, in cases of extreme temperature it might reduce its thermal tolerance.


Author(s):  
Sosuke Otani ◽  
Sosuke Otani ◽  
Akira Umehara ◽  
Akira Umehara ◽  
Haruka Miyagawa ◽  
...  

Fish yields of Ruditapes philippinarum have been decreased and the resources have not yet recovered. It needs to clarify food sources of R. philippinarum, and relationship between primary and secondary production of it. The purpose on this study is to reveal transfer efficiency from primary producers to R. philippinarum and food sources of R. philippinarum. The field investigation was carried out to quantify biomass of R. philippinarum and primary producers on intertidal sand flat at Zigozen beach in Hiroshima Bay, Japan. In particular, photosynthetic rates of primary producers such as Zostera marina, Ulva sp. and microphytobenthos were determined in laboratory experiments. The carbon and nitrogen stable isotope ratios for R. philippinarum and 8 potential food sources (microphytobenthos, MPOM etc) growing in the tidal flat were also measured. In summer 2015, the primary productions of Z. marina, Ulva sp. and microphytobenthos were estimated to be 70.4 kgC/day, 43.4 kgC/day and 2.2 kgC/day, respectively. Secondary production of R. philippinarum was 0.4 kgC/day. Contribution of microphytobenthos to R. philippinarum as food source was 56-76% on the basis of those carbon and nitrogen stable isotope ratios. Transfer efficiency from microphytobenthos to R. philippinarum was estimated to be 10-14%. It was suggested that microphytobenthos might sustain the high secondary production of R. philippinarum, though the primary production of microphytobenthos was about 1/10 compared to other algae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Parimuchová ◽  
Lenka Petráková Dušátková ◽  
Ľubomír Kováč ◽  
Táňa Macháčková ◽  
Ondřej Slabý ◽  
...  

AbstractTrophic interactions of cave arthropods have been understudied. We used molecular methods (NGS) to decipher the food web in the subterranean ecosystem of the Ardovská Cave (Western Carpathians, Slovakia). We collected five arthropod predators of the species Parasitus loricatus (gamasid mites), Eukoenenia spelaea (palpigrades), Quedius mesomelinus (beetles), and Porrhomma profundum and Centromerus cavernarum (both spiders) and prey belonging to several orders. Various arthropod orders were exploited as prey, and trophic interactions differed among the predators. Linear models were used to compare absolute and relative prey body sizes among the predators. Quedius exploited relatively small prey, while Eukoenenia and Parasitus fed on relatively large prey. Exploitation of eggs or cadavers is discussed. In contrast to previous studies, Eukoenenia was found to be carnivorous. A high proportion of intraguild predation was found in all predators. Intraspecific consumption (most likely cannibalism) was detected only in mites and beetles. Using Pianka’s index, the highest trophic niche overlaps were found between Porrhomma and Parasitus and between Centromerus and Eukoenenia, while the lowest niche overlap was found between Parasitus and Quedius. Contrary to what we expected, the high availability of Diptera and Isopoda as a potential prey in the studied system was not corroborated. Our work demonstrates that intraguild diet plays an important role in predators occupying subterranean ecosystems.


Author(s):  
Vanessa Modesto ◽  
Ester Dias ◽  
Martina Ilarri ◽  
Manuel Lopes‐Lima ◽  
Amílcar Teixeira ◽  
...  

2020 ◽  
Vol 38 (3) ◽  
pp. 273-286 ◽  
Author(s):  
Cristina Garcia-Cabezon ◽  
Celia Garcia-Hernandez ◽  
Maria L. Rodriguez-Mendez ◽  
Gemma Herranz ◽  
Fernando Martin-Pedrosa

AbstractMicrostructural changes that result in relevant improvements in mechanical properties and electrochemical behavior can be induced using different sintering conditions of ASTM F75 cobalt alloys during their processing using powder metallurgy technique. It has been observed that the increase in carbon and nitrogen content improves corrosion resistance and mechanical properties as long as the precipitation of carbides and nitrides is avoided, thanks to the use of rapid cooling in water after the sintering stage. In addition, the reduction of the particle size of the powder improves hardness and resistance to corrosion in both acid medium with chlorides and phosphate-buffered medium that simulates the physiological conditions for its use as a biomaterial. These results lead to increased knowledge of the role of carbon and nitrogen content in the behavior displayed by the different alloys studied.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82205 ◽  
Author(s):  
Tatiana Lemos Bisi ◽  
Paulo Renato Dorneles ◽  
José Lailson-Brito ◽  
Gilles Lepoint ◽  
Alexandre de Freitas Azevedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document