scholarly journals The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells

2021 ◽  
Vol 7 (9) ◽  
pp. eabb7921
Author(s):  
Tom Hodgkinson ◽  
P. Monica Tsimbouri ◽  
Virginia Llopis-Hernandez ◽  
Paul Campsie ◽  
David Scurr ◽  
...  

Bioactive metabolites have wide-ranging biological activities and are a potential source of future research and therapeutic tools. Here, we use nanovibrational stimulation to induce osteogenic differentiation of mesenchymal stem cells, in the absence of off-target, nonosteogenic differentiation. We show that this differentiation method, which does not rely on the addition of exogenous growth factors to culture media, provides an artifact-free approach to identifying bioactive metabolites that specifically and potently induce osteogenesis. We first identify a highly specific metabolite, cholesterol sulfate, an endogenous steroid. Next, a screen of other small molecules with a similar steroid scaffold identified fludrocortisone acetate with both specific and highly potent osteogenic-inducing activity. Further, we implicate cytoskeletal contractility as a measure of osteogenic potency and cell stiffness as a measure of specificity. These findings demonstrate that physical principles can be used to identify bioactive metabolites and then enable optimization of metabolite potency can be optimized by examining structure-function relationships.

2020 ◽  
Author(s):  
Thomas Hodgkinson ◽  
P. Monica Tsimbouri ◽  
Virginia Llopis-Hernandez ◽  
Paul Campsie ◽  
David Scurr ◽  
...  

Bioactive metabolites have wide-ranging biological activities and are a potential source of future research and therapeutic tools. Here, we use nanovibrational stimulation to induce the osteogenic differentiation of MSCs, in the absence of off-target differentiation. We show that this differentiation method, which does not rely on the addition of exogenous growth factors to the culture media, provides an artefact-free approach to identifying bioactive metabolites that specifically and potently induce osteogenesis. We first identify a highly specific metabolite as the endogenous steroid, cholesterol sulphate. Next, a screen of other small molecules with a similar steroid scaffold identified fludrocortisone acetate as being both specific and having highly potent osteogenic-inducing activity. These findings demonstrate that physical priciples can be used to identify bioactive metabolites and then metabolite potency can be optimised by examining structure-function relationship.


Author(s):  
Carmen Lanzillotti ◽  
Monica De Mattei ◽  
Chiara Mazziotta ◽  
Francesca Taraballi ◽  
John Charles Rotondo ◽  
...  

Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators of gene expression in many tissues. Increasing evidence indicates that lncRNAs, together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed expression, lncRNAs affect mRNA functionality through different activities, including interaction with miRNAs. Recent advances in RNA sequencing technology have improved knowledge into the molecular pathways regulated by the interaction of lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM), as well as from different other anatomical regions. The deep understanding of the connection between miRNAs and lncRNAs during the osteogenic differentiation will strongly improve knowledge into the molecular mechanisms of bone growth and development, ultimately leading to discover innovative diagnostic and therapeutic tools for osteogenic disorders and bone diseases.


2023 ◽  
Vol 83 ◽  
Author(s):  
V. A. Nascimento ◽  
S. M. Malmonge ◽  
A. R. Santos Jr.

Abstract Mesenchymal stem cells (MSCs) have great potential for application in cell therapy and tissue engineering procedures because of their plasticity and capacity to differentiate into different cell types. Given the widespread use of MSCs, it is necessary to better understand some properties related to osteogenic differentiation, particularly those linked to biomaterials used in tissue engineering. The aim of this study was to develop an analysis method using FT-Raman spectroscopy for the identification and quantification of biochemical components present in conditioned culture media derived from MSCs with or without induction of osteogenic differentiation. All experiments were performed between passages 3 and 5. For this analysis, MSCs were cultured on scaffolds composed of bioresorbable poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) polymers. MSCs (GIBCO®) were inoculated onto the pure polymers and 75:25 PHBV/PCL blend (dense and porous samples). The plate itself was used as control. The cells were maintained in DMEM (with low glucose) containing GlutaMAX® and 10% FBS at 37oC with 5% CO2 for 21 days. The conditioned culture media were collected and analyzed to probe for functional groups, as well as possible molecular variations associated with cell differentiation and metabolism. The method permitted to identify functional groups of specific molecules in the conditioned medium such as cholesterol, phosphatidylinositol, triglycerides, beta-subunit polypeptides, amide regions and hydrogen bonds of proteins, in addition to DNA expression. In the present study, FT-Raman spectroscopy exhibited limited resolution since different molecules can express similar or even the same stretching vibrations, a fact that makes analysis difficult. There were no variations in the readings between the samples studied. In conclusion, FT-Raman spectroscopy did not meet expectations under the conditions studied.


2013 ◽  
Vol 40 (12) ◽  
pp. 1220
Author(s):  
Jing XU ◽  
Dan ZHAO ◽  
Jian WANG ◽  
WenJuan WANG ◽  
JinYong LUO

2019 ◽  
Author(s):  
Leiluo Yang ◽  
Qing Li ◽  
Junhong Zhang ◽  
Pengcheng Li ◽  
Chaoliang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document