scholarly journals High-resolution terahertz-driven atom probe tomography

2021 ◽  
Vol 7 (7) ◽  
pp. eabd7259
Author(s):  
Angela Vella ◽  
Jonathan Houard ◽  
Laurent Arnoldi ◽  
Mincheng Tang ◽  
Matthias Boudant ◽  
...  

Ultrafast control of matter by a strong electromagnetic field on the atomic scale is essential for future investigations and manipulations of ionization dynamics and excitation in solids. Coupling picosecond duration terahertz pulses to metallic nanostructures allows the generation of extremely localized and intense electric fields. Here, using single-cycle terahertz pulses, we demonstrate control over field ion emission from metallic nanotips. The terahertz near field is shown to induce an athermal ultrafast evaporation of surface atoms as ions on the subpicosecond time scale, with the tip acting as a field amplifier. The ultrafast terahertz-ion interaction offers unprecedented control over ultrashort free-ion pulses for imaging, analyzing, and manipulating matter at atomic scales. Here, we demonstrate terahertz atom probe microscopy as a new platform for microscopy with atomic spatial resolution and ultimate chemical resolution.

Author(s):  
David J. Larson ◽  
Patrick P. Camus ◽  
Thomas F. Kelly

An atom probe field ion microscope (APFIM) has been constructed inside a NORAN Instruments Automated Digital Electron Microscope (ADEM). The ADEM is a scanning electron microscope (SEM) with a field emission source and a very large vacuum chamber. The APFIM has positive and negative high voltage capability and uses a microchannel-plate/phosphor screen assembly as an imaging and single-ion detector. The APFIM specimen can be cooled by a cryogenic refrigerator. The motivation for this study was the need to deliver an electron beam to the apex of an APFIM specimen while a high field is applied. The beam will be used to thermally pulse the field evaporation rate. The expected field-induced image shift and distortion has been studied previously in a transmission EM with a liquid metal field emission source as a specimen.Fig. 1 shows the interior of the instrument. Computer simulations were done for electron trajectories with negative and positive voltages applied to the emitter based on a simple paraboloidal electric field model described previously.


2020 ◽  
Vol 9 (5) ◽  
pp. 305-312
Author(s):  
Ryan Cardman ◽  
Luís F. Gonçalves ◽  
Rachel E. Sapiro ◽  
Georg Raithel ◽  
David A. Anderson

AbstractWe present electric field measurements and imaging of a Yagi–Uda antenna near-field using a Rydberg atom–based radio frequency electric field measurement instrument. The instrument uses electromagnetically induced transparency with Rydberg states of cesium atoms in a room-temperature vapor and off-resonant RF-field–induced Rydberg-level shifts for optical SI-traceable measurements of RF electric fields over a wide amplitude and frequency range. The electric field along the antenna boresight is measured using the atomic probe at a spatial resolution of ${\lambda }_{RF}/2$ with electric field measurement uncertainties below 5.5%, an improvement to RF measurement uncertainties provided by existing antenna standards.


2016 ◽  
Vol 22 (S3) ◽  
pp. 1534-1535
Author(s):  
Isabelle Martin ◽  
Robert Estivill ◽  
Marc Juhel ◽  
Adeline Grenier ◽  
Ty J. Prosa ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 2366-2369 ◽  
Author(s):  
Feng Zai Tang ◽  
Talukder Alam ◽  
Michael P. Moody ◽  
Baptiste Gault ◽  
Julie M. Cairney

Atom probe tomography provides compositional information in three dimensions at the atomic scale, and is therefore extremely suited to the study of nanocrystalline materials. In this paper we present atom probe results from the investigation of nanocomposite TiSi¬Nx coatings and nanocrystalline Al. We address some of the major challenges associated with the study of nanocrystalline materials, including specimen preparation, visualisation, common artefacts in the data and approaches to quantitative analysis. We also discuss the potential for the technique to relate crystallographic information to the compositional maps.


2015 ◽  
Vol 21 (S3) ◽  
pp. 1315-1316 ◽  
Author(s):  
Mukesh Bachhav ◽  
Yan Dong ◽  
Philip Skemer ◽  
Emmanuelle A. Marquis

2018 ◽  
Vol 33 (23) ◽  
pp. 4018-4030 ◽  
Author(s):  
Baptiste Gault ◽  
Andrew J. Breen ◽  
Yanhong Chang ◽  
Junyang He ◽  
Eric A. Jägle ◽  
...  

Abstract


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Kristiane A. K. Rusitzka ◽  
Leigh T. Stephenson ◽  
Agnieszka Szczepaniak ◽  
Lothar Gremer ◽  
Dierk Raabe ◽  
...  

2019 ◽  
Vol 9 (13) ◽  
pp. 2721 ◽  
Author(s):  
Cédric Barroo ◽  
Austin J. Akey ◽  
David C. Bell

Atom probe tomography is a well-established analytical instrument for imaging the 3D structure and composition of materials with high mass resolution, sub-nanometer spatial resolution and ppm elemental sensitivity. Thanks to recent hardware developments in Atom Probe Tomography (APT), combined with progress on site-specific focused ion beam (FIB)-based sample preparation methods and improved data treatment software, complex materials can now be routinely investigated. From model samples to complex, usable porous structures, there is currently a growing interest in the analysis of catalytic materials. APT is able to probe the end state of atomic-scale processes, providing information needed to improve the synthesis of catalysts and to unravel structure/composition/reactivity relationships. This review focuses on the study of catalytic materials with increasing complexity (tip-sample, unsupported and supported nanoparticles, powders, self-supported catalysts and zeolites), as well as sample preparation methods developed to obtain suitable specimens for APT experiments.


Sign in / Sign up

Export Citation Format

Share Document