Detecting Ozone- and Greenhouse Gas–Driven Wind Trends with Observational Data

Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 563-567 ◽  
Author(s):  
Sukyoung Lee ◽  
Steven B. Feldstein

Modeling studies suggest that Antarctic ozone depletion and, to a lesser degree, greenhouse gas (GHG) increase have caused the observed poleward shift in the westerly jet during the austral summer. Similar studies have not been performed previously with observational data because of difficulties in separating the two contributions. By applying a cluster analysis to daily ERA-Interim data, we found two 7- to 11-day wind clusters, one resembling the models' responses to GHG forcing and the other resembling ozone depletion. The trends in the clusters' frequency of occurrence indicate that the ozone contributed about 50% more than GHG toward the jet shift, supporting the modeling results. Moreover, tropical convection apparently plays an important role for the GHG-driven trend.

2008 ◽  
Vol 26 (6) ◽  
pp. 1379-1390 ◽  
Author(s):  
G. V. Müller ◽  
T. Ambrizzi ◽  
S. E. Ferraz

Abstract. Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.


2020 ◽  
Author(s):  
Sabine Haase ◽  
Jaika Fricke ◽  
Tim Kruschke ◽  
Sebastian Wahl ◽  
Katja Matthes

Abstract. Southern hemisphere lower stratospheric ozone depletion has been shown to lead to a poleward shift of the tropospheric jet stream during austral summer, influencing surface atmosphere and ocean conditions, such as surface temperatures and sea ice extent. The characteristics of stratospheric and tropospheric responses to ozone depletion, however, differ largely among climate models depending on the representation of ozone in the models. The most accurate way to represent ozone in a model is to calculate it interactively. However, due to computational costs, in particular for long-term coupled ocean-atmosphere model integrations, the more common way is to prescribe ozone from observations or calculated model fields. Here, we investigate the difference between an interactive and a specified chemistry version of the same atmospheric model in a fully-coupled setup using a 9-member chemistry-climate model ensemble. In the specified chemistry version of the model the ozone fields are prescribed using the output from the interactive chemistry model version. In contrast to earlier studies, we use daily-resolved ozone fields in the specified chemistry simulations to achieve a better comparability between the ozone forcing with and without interactive chemistry. We find that although the short-wave heating rate trend in response to ozone depletion is the same in the different chemistry settings, the interactive chemistry ensemble shows a stronger trend in polar cap stratospheric temperatures (by about 0.7 K per decade) and circumpolar stratospheric zonal mean zonal winds (by about 1.6 m/s per decade) as compared to the specified chemistry ensemble. This difference between interactive and specified chemistry in the stratospheric response to ozone depletion also affects the tropospheric response, namely the poleward shift of the tropospheric jet stream. We attribute part of these differences to the missing representation of feedbacks between chemistry and dynamics in the specified chemistry ensemble, which affect the dynamical heating rates, and part of it to the lack of spatial asymmetries in the prescribed ozone fields. This effect is investigated using a sensitivity ensemble that was forced by a three-dimensional instead of a two–dimensional ozone field. This study emphasizes the value of interactive chemistry for the representation of the southern hemisphere tropospheric jet response to ozone depletion and infers that for periods with strong ozone variability (trends) the details of the ozone forcing can be crucial for representing southern hemispheric climate variability.


2005 ◽  
Vol 5 (1) ◽  
pp. 863-874
Author(s):  
F. Vanhellemont ◽  
D. Fussen ◽  
C. Bingen ◽  
E. Kyrölä ◽  
J. Tamminen ◽  
...  

Abstract. Stratospheric aerosols play an important role in a number of atmospheric issues such as midlatitude ozone depletion, atmospheric dynamics and the Earth radiative budget. Polar stratospheric clouds on the other hand are a crucial factor in the yearly Arctic 5 and Antarctic ozone depletion. It is therefore important to quantify the stratospheric aerosol/PSC abundance. In orbit since March 2002, the GOMOS instrument onboard the European Envisat satellite has provided a vast aerosol extinction data set. In this paper we present an aerosol/PSC climatology that was constructed from this data set, together with a discussion of the results.


2020 ◽  
Author(s):  
Sabine Haase ◽  
Jaika Fricke ◽  
Katja Matthes

<p>Southern hemisphere lower stratospheric ozone depletion has been shown to lead to a poleward shift of the tropospheric jet stream during austral summer, influencing surface atmosphere and ocean conditions, such as surface temperatures and sea ice extend. The characteristics of stratospheric and tropospheric responses to ozone depletion, however, differ among climate models largely depending on the representation of ozone in the model.</p><p>The most accurate way to represent ozone in a model is to calculate it interactively. However, due to computational costs, in particular for long-term coupled ocean-atmosphere model integrations, the more common way is to prescribe ozone from observations or calculated model fields.</p><p>Here, we investigate the difference between an interactive chemistry and a specified chemistry version of the same atmospheric model in a fully-coupled setup using a large 9-member model ensemble. In contrast to most earlier studies, we use daily-resolved ozone fields in the specified chemistry simulations to achieve a better comparability between the ozone forcing with and without interactive chemistry. We find that although the short-wave heating rate trend in response to ozone depletion is the same in the different chemistry settings, the interactive chemistry ensemble shows a stronger trend in polar cap stratospheric temperatures and circumpolar stratospheric and tropospheric zonal mean zonal winds as compared to the specified chemistry ensemble. We attribute part of these differences to the missing representation of feedbacks between chemistry and dynamics in the specified chemistry ensemble and part of it to the lack of zonal asymmetries in the prescribed ozone fields.</p><p>This study emphasizes the value of interactive chemistry for the representation of the southern hemisphere tropospheric jet response to ozone depletion.</p>


2015 ◽  
Vol 28 (16) ◽  
pp. 6581-6586 ◽  
Author(s):  
Darryn W. Waugh ◽  
Chaim I. Garfinkel ◽  
Lorenzo M. Polvani

Abstract Observational evidence indicates that the southern edge of the Hadley cell (HC) has shifted southward during austral summer in recent decades. However, there is no consensus on the cause of this shift, with several studies reaching opposite conclusions as to the relative role of changes in sea surface temperatures (SSTs) and stratospheric ozone depletion in causing this shift. Here, the authors perform a meta-analysis of the extant literature on this subject and quantitatively compare the results of all published studies that have used single-forcing model integrations to isolate the role of different factors on the HC expansion during austral summer. It is shown that the weight of the evidence clearly points to stratospheric ozone depletion as the dominant driver of the tropical summertime expansion over the period in which an ozone hole was formed (1979 to late 1990s), although SST trends have contributed to trends since then. Studies that have claimed SSTs as the major driver of tropical expansion since 1979 have used prescribed ozone fields that underrepresent the observed Antarctic ozone depletion.


2005 ◽  
Vol 5 (9) ◽  
pp. 2413-2417 ◽  
Author(s):  
F. Vanhellemont ◽  
D. Fussen ◽  
C. Bingen ◽  
E. Kyrölä ◽  
J. Tamminen ◽  
...  

Abstract. Stratospheric aerosols play an important role in a number of atmospheric issues such as midlatitude ozone depletion, atmospheric dynamics and the Earth radiative budget. Polar stratospheric clouds on the other hand are a crucial factor in the yearly Arctic and Antarctic ozone depletion. It is therefore important to quantify the stratospheric aerosol/PSC abundance. In orbit since March 2002, the GOMOS instrument onboard the European Envisat satellite has provided a vast aerosol extinction data set. In this paper we present aerosol/PSC zonal median values that were constructed from this data set, together with a discussion of the results.


2020 ◽  
Vol 20 (22) ◽  
pp. 14043-14061
Author(s):  
Sabine Haase ◽  
Jaika Fricke ◽  
Tim Kruschke ◽  
Sebastian Wahl ◽  
Katja Matthes

Abstract. Southern Hemisphere lower-stratospheric ozone depletion has been shown to lead to a poleward shift of the tropospheric jet stream during austral summer, influencing surface atmosphere and ocean conditions, such as surface temperatures and sea ice extent. The characteristics of stratospheric and tropospheric responses to ozone depletion, however, differ among climate models depending on the representation of ozone in the models. The most appropriate way to represent ozone in a model is to calculate it interactively. However, due to computational costs, in particular for long-term coupled ocean–atmosphere model integrations, the more common way is to prescribe ozone from observations or calculated model fields. Here, we investigate the difference between an interactive and a specified chemistry version of the same atmospheric model in a fully coupled setup using a nine-member chemistry–climate model ensemble. In the specified chemistry version of the model the ozone fields are prescribed using the output from the interactive chemistry model version. We use daily resolved ozone fields in the specified chemistry simulations to achieve a very good comparability between the ozone forcing with and without interactive chemistry. We find that although the shortwave heating rate trend in response to ozone depletion is the same in the different chemistry settings, the interactive chemistry ensemble shows a stronger trend in polar cap stratospheric temperatures (by about 0.7 K decade−1) and circumpolar stratospheric zonal mean zonal winds (by about 1.6 m s−1 decade−1 as compared to the specified chemistry ensemble. This difference between interactive and specified chemistry in the stratospheric response to ozone depletion also affects the tropospheric response. However, an impact on the poleward shift of the tropospheric jet stream is not detected. We attribute part of the differences found in the experiments to the missing representation of feedbacks between chemistry and dynamics in the specified chemistry ensemble, which affect the dynamical heating rates, and part of it to the lack of spatial asymmetries in the prescribed ozone fields. This effect is investigated using a sensitivity ensemble that was forced by a three-dimensional instead of a two-dimensional ozone field. This study emphasizes the value of interactive chemistry for the representation of the Southern Hemisphere stratospheric-jet response to ozone depletion and infers that for periods with strong ozone variability (trends) the details of the ozone forcing could also have an influence on the representation of southern-hemispheric climate variability.


Author(s):  
Y. J. Kim ◽  
D. M. Henderson

Natural Amelia albite (Ab99.3An0.1Or0.6) annealed at 1073° and 924°C for various periods up to 140 days has been studied by NMR. TEM studies of the same sample revealed a distinct tweed microstructure in some samples annealed at both 1073°C and 924°C. On the whole, the quasi-regular tweed has a periodicity of 100 - 200 Å in both directions, one nearly normal to b* and the other approximately parallel to b*, which gives rise to two-directional streaking in SADP’s (Fig. 1 and 2). However, there are some differences in the tweed structure developed on annealing at 1073°C and at 924°C in albite.Albite samples annealed at 1073° show a systematic trend in their development of tweed structures: the regularity, periodicity, and frequency of occurrence increase with annealing time during the first 3 days, and then decrease gradually until no tweed microstructures are seen in samples annealed for more than 15 days. The tweed structure proceeds locally to form one-directional twin-like microstructures.


2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1193
Author(s):  
Chuchu Xu ◽  
Mi Yan ◽  
Liang Ning ◽  
Jian Liu

The upper-level jet stream, a narrow band of maximum wind speed in the mid-latitude westerlies, exerts a considerable influence on the global climate by modulating the transport and distribution of momentum, heat and moisture. In this study by using four high-resolution models in the Paleoclimate Modelling Intercomparison Project phase 3, the changes of position and intensity of the northern hemisphere westerly jet at 200 hPa in summer during the mid-Holocene (MH), as well as the related mechanisms, are investigated. The four models show similar performance on the westerly jet. At the hemispheric scale, the simulated westerly jet has a poleward shift during the MH compared to the preindustrial period. The warming in arctic and cooling in the tropics during the MH are caused by the orbital changes of the earth and the precipitation changes, and it could lead to the weakened meridional temperature gradient and pressure gradient, which might account for the poleward shift of the westerly jet from the thermodynamic perspective. From the dynamic perspective, two maximum centers of eddy kinetic energy are simulated over the North Pacific and North Atlantic with the north deviation, which could cause the northward movement of the westerly jet. The weakening of the jet stream is associated with the change of the Hadley cell and the meridional temperature gradient. The largest weakening is over the Pacific Ocean where both the dynamic and the thermodynamic processes have weakening effects. The smallest weakening is over the Atlantic Ocean, and it is induced by the offset effects of dynamic processes and thermodynamic processes. The weakening over the Eurasia is mainly caused by the dynamic processes.


Sign in / Sign up

Export Citation Format

Share Document