scholarly journals A 2003 stratospheric aerosol extinction and PSC climatology from GOMOS measurements on Envisat

2005 ◽  
Vol 5 (9) ◽  
pp. 2413-2417 ◽  
Author(s):  
F. Vanhellemont ◽  
D. Fussen ◽  
C. Bingen ◽  
E. Kyrölä ◽  
J. Tamminen ◽  
...  

Abstract. Stratospheric aerosols play an important role in a number of atmospheric issues such as midlatitude ozone depletion, atmospheric dynamics and the Earth radiative budget. Polar stratospheric clouds on the other hand are a crucial factor in the yearly Arctic and Antarctic ozone depletion. It is therefore important to quantify the stratospheric aerosol/PSC abundance. In orbit since March 2002, the GOMOS instrument onboard the European Envisat satellite has provided a vast aerosol extinction data set. In this paper we present aerosol/PSC zonal median values that were constructed from this data set, together with a discussion of the results.

2005 ◽  
Vol 5 (1) ◽  
pp. 863-874
Author(s):  
F. Vanhellemont ◽  
D. Fussen ◽  
C. Bingen ◽  
E. Kyrölä ◽  
J. Tamminen ◽  
...  

Abstract. Stratospheric aerosols play an important role in a number of atmospheric issues such as midlatitude ozone depletion, atmospheric dynamics and the Earth radiative budget. Polar stratospheric clouds on the other hand are a crucial factor in the yearly Arctic 5 and Antarctic ozone depletion. It is therefore important to quantify the stratospheric aerosol/PSC abundance. In orbit since March 2002, the GOMOS instrument onboard the European Envisat satellite has provided a vast aerosol extinction data set. In this paper we present an aerosol/PSC climatology that was constructed from this data set, together with a discussion of the results.


2016 ◽  
Vol 9 (7) ◽  
pp. 2927-2946 ◽  
Author(s):  
Ellis Remsberg ◽  
V. Lynn Harvey

Abstract. The historic Limb Infrared Monitor of the Stratosphere (LIMS) measurements of 1978–1979 from the Nimbus 7 satellite were re-processed with Version 6 (V6) algorithms and archived in 2002. The V6 data set employs updated radiance registration methods, improved spectroscopic line parameters, and a common vertical resolution for all retrieved parameters. Retrieved profiles are spaced about every 1.6° of latitude along orbits and include the additional parameter of geopotential height. Profiles of O3 are sensitive to perturbations from emissions of polar stratospheric clouds (PSCs). This work presents results of implementing a first-order screening for effects of PSCs using simple algorithms based on vertical gradients of the O3 mixing ratio. Their occurrences are compared with the co-located, retrieved temperatures and related to the temperature thresholds needed for saturation of H2O and/or HNO3 vapor onto PSC particles. Observed daily locations where the major PSC screening criteria are satisfied are validated against PSCs observed with the Stratospheric Aerosol Monitor (SAM) II experiment also on Nimbus 7. Remnants of emissions from PSCs are characterized for O3 and HNO3 following the screening. PSCs may also impart a warm bias in the co-located LIMS temperatures, but by no more than 1–2 K at the altitudes of where effects of PSCs are a maximum in the ozone; thus, no PSC screening was applied to the V6 temperatures. Minimum temperatures vary between 187 and 194 K and often occur 1 to 2 km above where PSC effects are first identified in the ozone (most often between about 21 and 28 hPa). Those temperature–pressure values are consistent with conditions for the existence of nitric acid trihydrate (NAT) mixtures and to a lesser extent of super-cooled ternary solution (STS) droplets. A local, temporary uptake of HNO3 vapor of order 1–3 ppbv is indicated during mid-January for the 550 K surface. Seven-month time series of the distributions of LIMS O3 and HNO3 are shown based on their gridded Level 3 data following the PSC screening. Zonal coefficients of both species are essentially free of effects from PSCs on the 550 K surface, based on their average values along PV contours and in terms of equivalent latitude. Remnants of PSCs are still present in O3 on the 450 K surface during mid-January. It is judged that the LIMS Level 3 data are of good quality for analyzing the larger-scale, stratospheric chemistry and transport processes during the Arctic winter of 1978–1979.


2018 ◽  
Vol 18 (15) ◽  
pp. 11149-11169 ◽  
Author(s):  
Johan Friberg ◽  
Bengt G. Martinsson ◽  
Sandra M. Andersson ◽  
Oscar S. Sandvik

Abstract. We present a study on the stratospheric aerosol load during 2006–2015, discuss the influence from volcanism and other sources, and reconstruct an aerosol optical depth (AOD) data set in a resolution of 1∘ latitudinally and 8 days timewise. The purpose is to include the “entire” stratosphere, from the tropopause to the almost particle-free altitudes of the midstratosphere. A dynamic tropopause of 1.5 PVU was used, since it enclosed almost all of the volcanic signals in the CALIOP data set. The data were successfully cleaned from polar stratospheric clouds using a temperature threshold of 195 K. Furthermore, a method was developed to correct data when the CALIOP laser beam was strongly attenuated by volcanic aerosol, preventing a negative bias in the AOD data set. Tropospheric influence, likely from upwelling dust, was found in the extratropical transition layer in spring. Eruptions of both extratropical and tropical volcanoes that injected aerosol into the stratosphere impacted the stratospheric aerosol load for up to a year if their clouds reached lower than 20 km altitude. Deeper-reaching tropical injections rose in the tropical pipe and impacted it for several years. Our AODs mostly compare well to other long-term studies of the stratospheric AOD. Over the years 2006–2015, volcanic eruptions increased the stratospheric AOD on average by ∼40 %. In absolute numbers the stratospheric AOD and radiative forcing amounted to 0.008 and −0.2 W m−2, respectively.


2015 ◽  
Vol 8 (12) ◽  
pp. 5223-5235 ◽  
Author(s):  
C. von Savigny ◽  
F. Ernst ◽  
A. Rozanov ◽  
R. Hommel ◽  
K.-U. Eichmann ◽  
...  

Abstract. Stratospheric aerosol extinction profiles have been retrieved from SCIAMACHY/Envisat measurements of limb-scattered solar radiation. The retrieval is an improved version of an algorithm presented earlier. The retrieved aerosol extinction profiles are compared to co-located aerosol profile measurements from the SAGE II solar occultation instrument at a wavelength of 525 nm. Comparisons were carried out with two versions of the SAGE II data set (version 6.2 and the new version 7.0). In a global average sense the SCIAMACHY and the SAGE II version 7.0 extinction profiles agree to within about 10 % for altitudes above 15 km. Larger relative differences (up to 40 %) are observed at specific latitudes and altitudes. We also find differences between the two SAGE II data versions of up to 40 % for specific latitudes and altitudes, consistent with earlier reports. Sample results on the latitudinal and temporal variability of stratospheric aerosol extinction and optical depth during the SCIAMACHY mission period are presented. The results confirm earlier reports that a series of volcanic eruptions is responsible for the increase in stratospheric aerosol optical depth from 2002 to 2012. Above about an altitude of 28 km, volcanic eruptions are found to have negligible impact in the period 2002–2012.


2020 ◽  
Author(s):  
Mahesh Kovilakam ◽  
Larry Thomason ◽  
Nicholas Ernest ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
...  

Abstract. A robust stratospheric aerosol climate data record enables the depiction of the radiative forcing of this highly variable component of climate. Since stratospheric aerosol also plays a key role in the chemical processes leading to ozone depletion, stratosphere is one of the crucial parameters in understanding climate change in the past and potential changes in the future. As a part of Stratospheric-tropospheric Processes and their Role in Climate (SPARC) Stratospheric Sulfur and its Role in Climate (SSiRC) activity, the Global Space-based Stratospheric Aerosol Climatology (GloSSAC) was created (Thomason et al., 2018) to support the World Climate Research Programme (WCRP)’s Coupled Model Intercomparison Project Phase 6 (CMIP6) (Zanchettin et al., 2016). This data set is a follow-on to one created as a part of Stratosphere-Troposphere Process and their Role in Climate Project (SPARC)’s Assessment of Stratospheric Aerosol Properties (ASAP) activity(SPARC, 2006) and a data created for Chemistry-Climate Model Initiative (CCMI) in 2012 (Eyring and Lamarque, 2012). Herein, we discuss changes to the original release version including those as a part of v1.1 that was released in September 2018 that primarily corrects an error in the conversion of Cryogenic Limb Array Etalon Spectrometer (CLAES) data to Stratospheric Aerosol and Gas Experiment (SAGE) II wavelengths, and the new release, v2.0. Version 2.0 is focused on improving the post-SAGE II era (after 2005) with the goal to mitigate elevated aerosol extinction in the lower stratosphere at mid and high latitudes noted in v1.0 as noted in Thomason et al. (2018). Changes include the use of version 7.0 of Optical Spectrograph and InfraRed Imaging System(OSIRIS), the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Lidar Level 3 Stratospheric Aerosol profile monthly product, and the new addition of SAGE III/ISS. Although, the version 7.0 OSIRIS data is substantially improved at its native wavelength of 750 nm, conversion to 525 nm using a constant Angstrom exponent often results in disagreements with SAGEII/ SAGE III/ISS overlap measurements. We, therefore use an observed relationship between OSIRIS extinction at 750 nm and SAGEII/SAGE III/ISS extinction at 525 nm to derive Altitude-Latitude based monthly climatology of Angstrom exponent to compute extinction at 525 nm, resulting in a better agreement between OSIRIS and SAGE measurements. We employ a similar approach to convert OSIRIS 750 nm extinction to 1020 nm extinction for the post-SAGEII period. Additionally, we incorporate the recently released standard CALIPSO stratospheric aerosol profile monthly product into GloSSAC with an improved conversion technique of 532 nm backscatter coefficient to extinction using an observed relationship between OSIRIS 525 nm extinction and CALIPSO 532 nm backscatter. We also investigate for any cloud contamination in OSIRIS/standard CALIPSO stratospheric aerosol product, which may have caused apparent enhancement in the aerosol extinction particularly in the lower stratosphere. SAGE III/ISS data is also incorporated in GloSSAC to extend the climatology to the present and to test the approach used to correct OSIRIS/CALIPSO data. The GloSSAC v2.0 netcdf file is accessible at https://doi.org/10.5067/glossac-l3-v2.0 (Thomason, 2020).


2018 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Landon Rieger ◽  
Adam Bourassa ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Stratospheric aerosols are of a great importance to the scientific community, predominantly because of their role in climate, but also because accurate knowledge of aerosol characteristics is relevant for trace gases retrievals from remote sensing instruments. There are several data sets published which provide aerosol extinction coefficients in the stratosphere. However, for the instruments measuring in the limb viewing geometry, the use of this parameter is associated with uncertainties resulting from the need to assume an aerosol particle size distribution (PSD) within the retrieval process. These uncertainties can be mitigated if PSD information is retrieved. While occultation instruments provide more accurate information on the aerosol extinction coefficient, in this study, it was shown that limb instruments have better potential for the PSD retrieval, especially during the background aerosol loading periods. A data set containing PSD information was recently retrieved from SCIAMACHY limb measurements and provides two parameters of the log-normal PSD for the SCIAMACHY operational period (2002–2012). In this study, the data set is expanded by aerosol extinction coefficients and Ångström exponents calculated from the retrieved PSD parameters. Errors in the Ångström exponents and aerosol extinction coefficients are assessed using synthetic retrievals. For the extinction coefficient the resulting accuracy is within ±25 %, and for the Ångström exponent, it is better than 10 %. The recalculated SCIAMACHY aerosol extinction coefficients are compared to those from SAGE II. The differences between the instruments vary from 0 to 25 % depending on the wavelength. Ångström exponent comparison with SAGE II shows differences between 10 % at 31 km and 40 % at 18 km. Comparisons with SAGE II, however, suffer from the low amount of collocated profiles. Furthermore, the Ångström exponents obtained from the limb viewing instrument OSIRIS are used for the comparison. This comparison shows an average difference within 7 %. The time series of these differences do not show signatures of any remarkable events. Besides, the temporal behavior of the Ångström exponent in the tropics is analyzed using the SCIAMACHY data set. It is shown, that there is no simple relation between the Ångström exponent and the PSD because the same value of Ångström exponent can be obtained from an infinite number of combinations of the PSD parameters.


2019 ◽  
Vol 69 (1) ◽  
pp. 16
Author(s):  
Matthew B. Tully ◽  
Andrew R. Klekociuk ◽  
Paul B. Krummel ◽  
H. Peter Gies ◽  
Simon P. Alexander ◽  
...  

We reviewed the 2015 and 2016 Antarctic ozone holes, making use of a variety of ground-based and spacebased measurements of ozone and ultraviolet radiation, supplemented by meteorological reanalyses. The ozone hole of 2015 was one of the most severe on record with respect to maximum area and integrated deficit and was notably longlasting, with many values above previous extremes in October, November and December. In contrast, all assessed metrics for the 2016 ozone hole were at or below their median values for the 37 ozone holes since 1979 for which adequate satellite observations exist. The 2015 ozone hole was influenced both by very cold conditions and enhanced ozone depletion caused by stratospheric aerosol resulting from the April 2015 volcanic eruption of Calbuco (Chile).


Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 563-567 ◽  
Author(s):  
Sukyoung Lee ◽  
Steven B. Feldstein

Modeling studies suggest that Antarctic ozone depletion and, to a lesser degree, greenhouse gas (GHG) increase have caused the observed poleward shift in the westerly jet during the austral summer. Similar studies have not been performed previously with observational data because of difficulties in separating the two contributions. By applying a cluster analysis to daily ERA-Interim data, we found two 7- to 11-day wind clusters, one resembling the models' responses to GHG forcing and the other resembling ozone depletion. The trends in the clusters' frequency of occurrence indicate that the ozone contributed about 50% more than GHG toward the jet shift, supporting the modeling results. Moreover, tropical convection apparently plays an important role for the GHG-driven trend.


2008 ◽  
Vol 8 (4) ◽  
pp. 983-995 ◽  
Author(s):  
L. W. Thomason ◽  
S. P. Burton ◽  
B.-P. Luo ◽  
T. Peter

Abstract. Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, during background periods, the SAD operational product has an uncertainty of at least a factor of 2 due to the lack of sensitivity to particles with radii less than 100 nm.


2007 ◽  
Vol 7 (3) ◽  
pp. 6959-6997 ◽  
Author(s):  
L. W. Thomason ◽  
S. P. Burton ◽  
B.-P. Luo ◽  
T. Peter

Abstract. Since 2000, stratospheric aerosol levels have been relatively stable and at the lowest levels observed in the historical record. Given the challenges of making satellite measurements of aerosol properties at these levels, we have performed a study of the sensitivity of the product to the major components of the processing algorithm used in the production of SAGE II aerosol extinction measurements and the retrieval process that produces the operational surface area density (SAD) product. We find that the aerosol extinction measurements, particularly at 1020 nm, remain robust and reliable at the observed aerosol levels. On the other hand, background periods, the SAD operational product has an uncertainty of at least a factor of 2 due to the lack of sensitivity to particles with radii less than 100 nm.


Sign in / Sign up

Export Citation Format

Share Document