scholarly journals The role of the observed tropical convection in the generation of frost events in the southern cone of South America

2008 ◽  
Vol 26 (6) ◽  
pp. 1379-1390 ◽  
Author(s):  
G. V. Müller ◽  
T. Ambrizzi ◽  
S. E. Ferraz

Abstract. Based on previous results obtained from observations and linear wave theory analysis, the hypothesis that large-scale patterns can generate extreme cold events in southeast South America through the propagation of remotely excited Rossby waves was already suggested. This work will confirm these findings and extend their analysis through a series of numerical experiments using a primitive equation model where waves are excited by a thermal forcing situated in positions chosen according to observed convection anomalies over the equatorial region. The basic state used for these experiments is a composite of austral winters with maximum and minimum frequency of occurrence of generalized frosts that can affect a large area known as the Wet Pampas located in the central and eastern part of Argentina. The results suggest that stationary Rossby waves may be one important mechanism linking anomalous tropical convection with the extreme cold events in the Wet Pampas. The combination of tropical convection and a specific basic state can generate the right environment to guide the Rossby waves trigged by the tropical forcing towards South America. Depending on the phase of the waves entering the South American continent, they can favour the advection of anomalous wind at low levels from the south carrying cold and dry air over the whole southern extreme of the continent, producing a generalized frost in the Wet Pampa region. On the other hand, when a basic state based on the composites of minimum frosts is used, an anomalous anticyclone over the southern part of the continent generates a circulation with a south-southeast wind which brings maritime air and therefore humidity over the Wet Pampas region, creating negative temperature anomalies only over the northeastern part of the region. Under these conditions even if frosts occur they would not be generalized, as observed for the other basic state with maximum frequency of occurrence of generalized frosts.

2012 ◽  
Vol 25 (11) ◽  
pp. 3851-3866 ◽  
Author(s):  
David Medvigy ◽  
Robert L. Walko ◽  
Roni Avissar

Many modeling studies have indicated that deforestation will increase the average annual temperature in the Amazon. However, few studies have investigated the potential for deforestation to change the frequency and intensity of extreme events. This problem is addressed here using a variable-resolution GCM. The characteristic length scale (CLS) of the model’s grid mesh over South America is 25 km, comparable to that used by limited-area models. For computational efficiency, the CLS increases to 200 km over the rest of the world. It is found that deforestation induces large changes in the frequency of wintertime extreme cold events. Large increases in cold event frequency and intensity occur in the western Amazon and, surprisingly, in parts of southern South America, far from the actual deforested area. One possible mechanism for these remote effects involves changes in the position of the subtropical jet, caused by temperature changes in the Amazon. Increased understanding of these potential changes in extreme events will be important for local agriculture, natural ecosystems, and the human population.


Phytotaxa ◽  
2017 ◽  
Vol 291 (4) ◽  
pp. 287 ◽  
Author(s):  
D. B. POINDEXTER ◽  
M. ESCUDERO ◽  
P. JIMÉNEZ-MEJÍAS

In 1906, Clarke described C. hypsipedos based on specimens of Weberbauer 2617 and placed this species in subgenus Vignea. In 1909, Kükenthal also described the name C. umbellata var. depressa on the basis of the number Weberbauer 2617, a species attributed to section Acrocystis of subgenus Carex. Wheeler in 1988 also placed C. hypsipedos in section Acrocystis while reducing Kükenthal’s name to synonymy. During a recent herbarium survey, we studied syntypes corresponding to Weberbauer 2617 at B, F, G, and MOL. The study of these materials revealed important inconsistencies between the specimens and Clarke’s protologue and Wheeler’s study, suggesting that Weberbauer 2617 is a mixed collection of two different species. One plant conforms to Carex sect. Acrocystis, while the other bears resemblance to subgenus Vignea. Several salient characters distinguish these two taxa from each other, most notably including: stigmas 3 vs. stigmas 2, achenes trigonous vs. lenticular, and perigynium pubescent to puberulent vs. glabrous. Carex hypsipedos from Peru, corresponding to Clarke’s original description, is here lectotypified. The Carex sect. Acrocystis species is assigned a new name, Carex punicola, from Argentina, Bolivia, and Peru (South America). In addition to Wheeler’s (1988) observations, we here provide additional detail and illustration of this species. It is closely related to C. geophila, another American species in section Acrocystis.


2021 ◽  
Vol 2 (2) ◽  
pp. 475-488
Author(s):  
Gabriel M. P. Perez ◽  
Pier Luigi Vidale ◽  
Nicholas P. Klingaman ◽  
Thomas C. M. Martin

Abstract. Organised cloud bands are important features of tropical and subtropical rainfall. These structures are often regarded as convergence zones, alluding to an association with coherent atmospheric flow. However, the flow kinematics is not usually taken into account in classification methods for this type of event, as large-scale lines are rarely evident in instantaneous diagnostics such as Eulerian convergence. Instead, existing convergence zone definitions rely on heuristic rules of shape, duration and size of cloudiness fields. Here we investigate the role of large-scale turbulence in shaping atmospheric moisture in South America. We employ the finite-time Lyapunov exponent (FTLE), a metric of deformation among neighbouring trajectories, to define convergence zones as attracting Lagrangian coherent structures (LCSs). Attracting LCSs frequent tropical and subtropical South America, with climatologies consistent with the South Atlantic Convergence Zone (SACZ), the South American Low-Level Jet (SALLJ) and the Intertropical Convergence Zone (ITCZ). In regions under the direct influence of the ITCZ and the SACZ, rainfall is significantly positively correlated with large-scale mixing measured by the FTLE. Attracting LCSs in south and southeast Brazil are associated with significant positive rainfall and moisture flux anomalies. Geopotential height composites suggest that the occurrence of attracting LCSs in these regions is related with teleconnection mechanisms such as the Pacific–South Atlantic. We believe that this kinematical approach can be used as an alternative to region-specific convergence zone classification algorithms; it may help advance the understanding of underlying mechanisms of tropical and subtropical rain bands and their role in the hydrological cycle.


2020 ◽  
Author(s):  
Gabriel M. P. Perez ◽  
Pier Luigi Vidale ◽  
Nicholas P. Klingaman ◽  
Thomas C. M. Martin

Abstract. Organised cloud bands are important features of tropical and subtropical rainfall. These structures are often regarded as convergence zones, alluding to an association with coherent atmospheric flow. However, the flow kinematics is not usually taken into account in classification methods for this type of event, as large-scale lines are rarely evident in instantaneous diagnostics such as Eulerian convergence. Instead, existing convergence zone definitions rely on heuristic rules of shape, duration and size of cloudiness fields. Here we investigate the role of large-scale turbulence in shaping atmospheric moisture in South America. We employ the Finite-Time Lyapunov Exponent (FTLE), a metric of deformation among neighboring trajectories, to define convergence zones as attracting Lagrangian Coherent Structures (LCSs). Attracting LCSs frequent tropical and subtropical South America, with climatologies consistent with the South Atlantic Convergence Zone (SACZ), the South American Low-level Jet (SALLJ) and the Intertropical Convergence Zone (ITCZ). In regions under the direct influence of the ITCZ and the SACZ, rainfall is significantly positively correlated with large-scale mixing measured by the FTLE. Attracting LCSs in South and Southeast Brazil are associated with significant positive rainfall and moisture flux anomalies. Geopotential height composites suggest that the occurrence of attracting LCSs in these regions is related with teleconnection mechanisms such as the Pacific-South Atlantic. We believe that this kinematical approach can be used as an alternative to region-specific convergence zone classification algorithms; it may help advance the understanding of underlying mechanisms of tropical and subtropical rain bands and their role in the hydrological cycle.


2021 ◽  
Author(s):  
Sören Johansson ◽  
Michael Höpfner ◽  
Felix Friedl-Vallon ◽  
Norbert Glatthor ◽  
Jörn Ungermann ◽  
...  

<p>We present trace gas measurements obtained by the airborne imaging limb sounder GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) that has been operated onboard the German HALO (High Altitude and Long Range) research aircraft above the South Atlantic during the SouthTRAC campaign between September and November 2019. We show retrieval results as two-dimensional trace-gas distributions derived from GLORIA observations in the UTLS (Upper Troposphere Lower Stratosphere) region above South America and the Atlantic Ocean. Targeted gases are, amongst others, O<sub>3</sub>, HNO<sub>3</sub>, PAN, C<sub>2</sub>H<sub>6</sub>, and HCOOH. Using trajectories from the HYSPLIT model, measured pollution trace gas plumes are linked to possible regions of origin. Emission sources are connected to large scale biomass burning events in central Africa, South America and Australia. In our contribution, we compare these GLORIA measurements with results of the CAMS (Copernicus Atmosphere Monitoring Service) reanalysis model. We show that there are very delicate structures of pollutant trace gas distributions in the South Atlantic UTLS, and that CAMS generally is able to reproduce measured distributions of pollutants. Quantitatively, PAN volume mixing ratios are captured quite well by the model, which however underestimates the concentrations of C<sub>2</sub>H<sub>6</sub> and in particular of HCOOH. Furthermore, biomass burning emissions from the beginning of the intensive Australian fires in November 2019, which are measured by GLORIA in thin filaments are not reproduced by the model.</p>


2011 ◽  
Vol 12 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Viviane B. S. Silva ◽  
Vernon E. Kousky ◽  
R. Wayne Higgins

Abstract In this study, the authors document the extent to which the precipitation statistics of the new CFS reanalysis (CFSR) represent an improvement over the earlier reanalyses: the NCEP–NCAR reanalysis (R1) and the NCEP–DOE Second Atmospheric Model Intercomparison Project (AMIP-II) reanalysis (R2). An intercomparison between the CFSR, R1, R2, and observations over South America was made for the period 1979–2006. The CFSR shows notable improvements in the large-scale precipitation patterns compared with the previous reanalyses (R1 and R2). In spite of these improvements, the CFSR has substantial biases in intensity and frequency of occurrence of rainfall events. Over west-central Brazil, the core region of the South American monsoon system (SAMS), the CFSR displays a dry bias during the onset phase of the SAMS wet season and a wet bias during the peak and decay phases of the SAMS wet season. The CFSR also displays a dry bias along the South American coast near the mouth of the Amazon and along the east coast of northeastern Brazil. A wet bias exists in all seasons over southeast Brazil and over the Andes Mountains.


Science ◽  
2013 ◽  
Vol 339 (6119) ◽  
pp. 563-567 ◽  
Author(s):  
Sukyoung Lee ◽  
Steven B. Feldstein

Modeling studies suggest that Antarctic ozone depletion and, to a lesser degree, greenhouse gas (GHG) increase have caused the observed poleward shift in the westerly jet during the austral summer. Similar studies have not been performed previously with observational data because of difficulties in separating the two contributions. By applying a cluster analysis to daily ERA-Interim data, we found two 7- to 11-day wind clusters, one resembling the models' responses to GHG forcing and the other resembling ozone depletion. The trends in the clusters' frequency of occurrence indicate that the ozone contributed about 50% more than GHG toward the jet shift, supporting the modeling results. Moreover, tropical convection apparently plays an important role for the GHG-driven trend.


2017 ◽  
Vol 7 (2) ◽  
pp. 232-243 ◽  
Author(s):  
James E. Overland ◽  
Muyin Wang

Far-field temperature and geopotential height fields associated with eastern North American early winter (DEC-JAN) extreme cold events are documented since 1950. Based on 19 cases of monthly extreme cold events, two large-scale patterns emerge. First, a strong Alaskan Ridge (AR) can develop with higher 700 hPa geopotential heights and positive temperature anomalies from Alaska south along the coastal northeastern Pacific Ocean, and low eastern North American geopotential height anomalies, the well-known North American ridge/trough pattern. A second subset of cases is a Greenland-Baffin Blocking (GBB) pattern that have positive temperature anomalies centered west of Greenland with a cut off tropospheric polar vortex feature over eastern North America; cold temperature anomalies extend from southeastern United States northwestward into central Canada. Both of these historical large-scale patterns associated with eastern North American cold events (AR and GBB) have the potential for future reinforcement by sea ice loss and associated warm Arctic regional temperature anomalies. An example of a GBB case is 15-22 December 2010 and an extreme AR case is in early 4-14 December 2016. In both cases lack of sea ice and warm temperature anomalies were colocated with local maximums in the geopotential height anomaly fields. Future regional delay of fall freeze up in the Chukchi Sea and Baffin Bay regions could reinforce these geopotential height patterns once they occur, but is not likely to initiate AR and GBB type events.


Sign in / Sign up

Export Citation Format

Share Document