scholarly journals Generation of human oogonia from induced pluripotent stem cells in vitro

Science ◽  
2018 ◽  
Vol 362 (6412) ◽  
pp. 356-360 ◽  
Author(s):  
Chika Yamashiro ◽  
Kotaro Sasaki ◽  
Yukihiro Yabuta ◽  
Yoji Kojima ◽  
Tomonori Nakamura ◽  
...  

Human in vitro gametogenesis may transform reproductive medicine. Human pluripotent stem cells (hPSCs) have been induced into primordial germ cell–like cells (hPGCLCs); however, further differentiation to a mature germ cell has not been achieved. Here, we show that hPGCLCs differentiate progressively into oogonia-like cells during a long-term in vitro culture (approximately 4 months) in xenogeneic reconstituted ovaries with mouse embryonic ovarian somatic cells. The hPGCLC-derived oogonia display hallmarks of epigenetic reprogramming—genome-wide DNA demethylation, imprint erasure, and extinguishment of aberrant DNA methylation in hPSCs—and acquire an immediate precursory state for meiotic recombination. Furthermore, the inactive X chromosome shows a progressive demethylation and reactivation, albeit partially. These findings establish the germline competence of hPSCs and provide a critical step toward human in vitro gametogenesis.

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 876
Author(s):  
Raquel Bernad ◽  
Cian J. Lynch ◽  
Rocio G. Urdinguio ◽  
Camille Stephan-Otto Attolini ◽  
Mario F. Fraga ◽  
...  

Pluripotent stem cells can be stabilized in vitro at different developmental states by the use of specific chemicals and soluble factors. The naïve and primed states are the best characterized pluripotency states. Naïve pluripotent stem cells (PSCs) correspond to the early pre-implantation blastocyst and, in mice, constitute the optimal starting state for subsequent developmental applications. However, the stabilization of human naïve PSCs remains challenging because, after short-term culture, most current methods result in karyotypic abnormalities, aberrant DNA methylation patterns, loss of imprinting and severely compromised developmental potency. We have recently developed a novel method to induce and stabilize naïve human PSCs that consists in the simple addition of a chemical inhibitor for the closely related CDK8 and CDK19 kinases (CDK8/19i). Long-term cultured CDK8/19i-naïve human PSCs preserve their normal karyotype and do not show widespread DNA demethylation. Here, we investigate the long-term stability of allele-specific methylation at imprinted loci and the differentiation potency of CDK8/19i-naïve human PSCs. We report that long-term cultured CDK8/19i-naïve human PSCs retain the imprinting profile of their parental primed cells, and imprints are further retained upon differentiation in the context of teratoma formation. We have also tested the capacity of long-term cultured CDK8/19i-naïve human PSCs to differentiate into primordial germ cell (PGC)-like cells (PGCLCs) and trophoblast stem cells (TSCs), two cell types that are accessible from the naïve state. Interestingly, long-term cultured CDK8/19i-naïve human PSCs differentiated into PGCLCs with a similar efficiency to their primed counterparts. Also, long-term cultured CDK8/19i-naïve human PSCs were able to differentiate into TSCs, a transition that was not possible for primed PSCs. We conclude that inhibition of CDK8/19 stabilizes human PSCs in a functional naïve state that preserves imprinting and potency over long-term culture.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Young Sun Hwang ◽  
Shinnosuke Suzuki ◽  
Yasunari Seita ◽  
Jumpei Ito ◽  
Yuka Sakata ◽  
...  

Abstract Establishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we establish a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells differentiated from human induced pluripotent stem cells are further induced into M-prospermatogonia-like cells and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing is used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibit gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enables us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


2020 ◽  
Author(s):  
Young Sun Hwang ◽  
Shinnosuke Suzuki ◽  
Yasunari Seita ◽  
Jumpei Ito ◽  
Yuka Sakata ◽  
...  

ABSTRACTEstablishment of spermatogonia throughout the fetal and postnatal period is essential for production of spermatozoa and male fertility. Here, we established a protocol for in vitro reconstitution of human prospermatogonial specification whereby human primordial germ cell (PGC)-like cells (hPGCLCs) differentiated from human induced pluripotent stem cells were further induced into M-prospermatogonia-like cells (MLCs) and T1 prospermatogonia-like cells (T1LCs) using long-term cultured xenogeneic reconstituted testes. Single cell RNA-sequencing was used to delineate the lineage trajectory leading to T1LCs, which closely resemble human T1-prospermatogonia in vivo and exhibited gene expression related to spermatogenesis and diminished proliferation, a hallmark of quiescent T1 prospermatogonia. Notably, this system enabled us to visualize the dynamic and stage-specific regulation of transposable elements during human prospermatogonial specification. Together, our findings pave the way for understanding and reconstructing human male germline development in vitro.


2020 ◽  
Vol 32 (2) ◽  
pp. 237
Author(s):  
N. Pieri ◽  
R. Botigelli ◽  
A. de Souza ◽  
K. Recchia ◽  
R. de Castro ◽  
...  

The ability to generate primordial germ cell-like (PGCLs) from induced pluripotent stem cells (iPSCs) in swine could greatly contribute to regenerative medicine. Herein, we aimed to generate porcine PGCLs (ipPGCLs) from iPSCs derived from different culture systems. Porcine (p)iPSCs from fibroblasts of stillborn animals (n=3) were transduced with lentiviral vectors containing murine OCT4, SOX2, c-MYC, and KLF4 cDNAs and maintained in iPSC medium on mouse embryonic fibroblasts (MEFs). The cells were divided into three groups: (1) supplemented with 10ngmL−1 basic fibroblast growth factor (bFGF) and murine leukemia inhibitory factor (LIF), (2) only bFGF, or (3) only LIF. The piPSC colonies were generated and characterised for pluripotency. To induce piPSCs into ipPGCLs, three or more cell lines from each culture condition (after passage 20) were differentiated into epiblast stem cell-like cells (EpiLCs) by culture with 20ngmL−1 Activin A, 12ngmL−1 bFGF, and 1% knockout serum replacement (KSR) for 2 days. Then, cells were further induced to differentiate by nonadherent culture and supplementation with 500ngmL−1 bone morphogenetic protein (BMP)4, 500ngmL−1 BMP8a, LIF, 100ngmL−1 stem cell factor (SCF), and 50ngmL−1 epidermal growth factor for 4 days. The ipPGCLs were characterised by cell morphology and detection of germ cell markers by immunofluorescence and gene expression. Statistical analysis was determined by one-way ANOVA (Prism Software). Co-location quantification was determined using the plugin Colocalization Threshold in Image J software (National Institutes of Health). On average, the efficiency rate of iPSC generation was 71% for the iPSCs-bFGF group, 17% for the LIF group, and 85% for the bFGF+LIF group. All iPSCs colonies were positive for alkaline phosphatase and OCT4, SOX2, NANOG, TRA1-60, TRA1-81, SSEA1, and SSEA4 by immunofluorescence. Embryoid body assay revealed that the piPSCs were able to differentiate into three germ layers. The culture condition did not influence the expression of OCT4, NANOG, and KLF4 based on qRT-PCR, however; SOX2 was upregulated in the LIF group (P<0.05). The ipPGCLs generated showed a round morphology. Analysis of endogenous pluripotent genes OCT4, SOX2, and NANOG throughout differentiation (fibroblasts, iPSCs, EpiLCs, and PGCLs) revealed a mild upregulation in ipPGCLs, while OCT4 was slightly downregulated in ipPGCLs from iPSCs-LIF group. PRDM14 and STELLA were not observed in ipPGCLs, although BLIMP1 was present; DAZL and VASA were mildly upregulated. The STELLA, VASA, OCT4, and SOX2 proteins were detected in ipPGCLs, and DAZL was detected only in ipPGCLs from the iPSCs-FGF group. Protein co-localization analysis showed that ipPGCLs from the iPSCs-FGF group were 100% OCT4+STELLA-positive, 55% positive for DAZL+SOX2, and 66% positive for VASA+NANOG; for the LIF group: 99.3% were OCT4+STELLA positive, DAZL was not detected, 95.2% were positive for SOX2 and 85.6% for VASA+NANOG. In the bFGF+LIF group, 95.8% were positive for OCT4+STELLA, DAZL and SOX2 were not observed, and 70% were positive for VASA+NANOG. Exogenous reprogramming factors were still expressed and did not differ between groups. These results indicate that, under our conditions, the iPSCs-FGF group may represent the best culture condition for induction into ipPGCLs. Financial support for this study was provided by FAPESP (2015/25564-0 and 2015/26818-5).


2018 ◽  
Vol 30 (1) ◽  
pp. 231
Author(s):  
F. F. Bressan ◽  
M. A. Lima ◽  
L. S. Machado ◽  
N. C. G. Pieiri ◽  
P. Fantinato-Neto ◽  
...  

Embryonic pluripotent stem cells (ESC) and induced pluripotent stem cells (iPSC) were reported capable of differentiating into primordial germ cell-like (PGCL) and functional gametes in vitro in the murine model (Hikabe et al. 2016 Nature 539, 299-303). The in vitro generation of primordial germ cells (PGC) and gametes from farm animals would greatly contribute to enhance animal production technologies and to the creation of adequate models for several disorders. The present study aimed at the generation of PGC in vitro (iPGC) from iPSC in cattle and their characterisation through pluripotency and germ cell markers. For that, bovine iPSC previously generated and characterised (Bressan et al. 2015 Reprod. Fertil. Dev. 27, 254) were submitted to in vitro differentiation into epiblast-like cells (EpiLC) and iPGC by the protocol adapted from mice (Hayashi et al. 2011 Cell 146, 519-532). The biPS cells were induced into EpiLC by culture in fibronectin-coated (16.7 µg mL−1) 6-well plates in N2B27 culture medium supplemented with 20 ng mL−1 activin A, 12 ng mL−1 basic fibroblast growth factor (bFGF), and 1% knockout serum replacement (KSR) for 48 h and further differentiated into iPGC by non-adherent culture (Agreewell plates, StemCell Technologies, Vancouver, BC, Canada) with GK15 medium (GMEM supplemented with 15% KSR, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 0.1 mM 2-mercaptoethanol, 2 mm l-glutamine, and 1% antibiotics) in the presence of 500 ng mL−1 BMP4, 100 ng mL−1 SCF, 500 ng mL−1 BMP8b, and 50 ng mL−1 epidermal growth factor for 4 days. The cells were then characterised regarding morphology, detection of alkaline phosphatase, immunofluorescence for OCT4, DDX4, VASA, and c-Kit proteins, and transcripts of pluripotency-related genes OCT4 and SOX2, as well as of imprinted genes (H19, SNRPN) and imprinted-related (DNMT1, DNMT3B) genes were analysed through RT-qPCR and compared with constitutive genes GAPDH, NAT1, and ACTB. Alkaline phosphatase and immunofluorescence analysis were positive for all specific markers. Interestingly, although OCT4 and SOX2 expression was present in iPS, EpiLC, and iPGC, this last group presented greater OCT4 and lesser SOX2 transcript amounts compared with other groups, suggesting, as expected, that PGC are still pluripotent but may already be differentiating into germ-cell lineages. The expression of H19 was increased in iPGC, whereas the expression of SNRPN was decreased only in the fibroblast group, potentially indicating epigenetic reprogramming process in these cells. Expression of DNMT1 and DNMT3B was not different between pluripotent groups but subtly increased when compared with that in fibroblasts. The results obtained herein represent an important first step in the in vitro generation of PGC and gametes from domestic farm animals, an unprecedented and desirable tool for enhancing new reproductive technologies and providing new understanding of cellular reprogramming and pluripotent germ cell biology. Financially supported by FAPESP grants 2013/08135-2, 2013/13686-8, 2015/26818-5; CNPq 482163/2013-5.


Sign in / Sign up

Export Citation Format

Share Document