scholarly journals A radiation belt of energetic protons located between Saturn and its rings

Science ◽  
2018 ◽  
Vol 362 (6410) ◽  
pp. eaat1962 ◽  
Author(s):  
E. Roussos ◽  
P. Kollmann ◽  
N. Krupp ◽  
A. Kotova ◽  
L. Regoli ◽  
...  

Saturn has a sufficiently strong dipole magnetic field to trap high-energy charged particles and form radiation belts, which have been observed outside its rings. Whether stable radiation belts exist near the planet and inward of the rings was previously unknown. The Cassini spacecraft’s Magnetosphere Imaging Instrument obtained measurements of a radiation belt that lies just above Saturn’s dense atmosphere and is decoupled from the rest of the magnetosphere by the planet’s A- to C-rings. The belt extends across the D-ring and comprises protons produced through cosmic ray albedo neutron decay and multiple charge-exchange reactions. These protons are lost to atmospheric neutrals and D-ring dust. Strong proton depletions that map onto features on the D-ring indicate a highly structured and diverse dust environment near Saturn.

2021 ◽  
Author(s):  
Zhenxia Zhang

<p>Based on data from the ZH-1 satellites, companied with Van Allen Probes and NOAA observations, we analyze the high energy particle evolutions in radiation belts, slot region and SAA during August 2018 major geomagnetic storm (minimum Dst ≈ −190 nT). </p><p>  1) Relativistic electron enhancements in extremely low L-shell regions (reaching L ∼ 3) were observed during storm. Contrary to what occurs in the outer belt, such an intense and deep electron penetration event is rare and more interesting. Strong whistler-mode (chorus and hiss) waves, with amplitudes 81–126 pT, were also observed in the extremely low L-shell simultaneously (reaching L ∼ 2.5) where the plasmapause was suppressed. The bounce-averaged diffusion coefficient calculations support that the chorus waves can play a significantly important role in diffusing and accelerating the 1–3 MeV electrons even in such low L-shells during storms.</p><p>2) A robust evidence is clearly demonstrated that the energetic electron flux with energy 30∼600 keV are increased by 2∼3 times in the inner radiation belt near equator and SAA region on dayside during the major geomagnetic storm. This is the first time that the 100s keV electron flux enhancement is reported to be potentially induced by the interaction with magnetosonic waves in extremely low L-shells (L<2) observed by Van Allen Probes. Proton loss in outer boundary of inner radiation belt takes place in energy of 2~220 MeV extensively during the occurrence of this storm but the loss mechanism is energy dependence which is consistent with some previous studies. It is confirmed that the magnetic field line curvature scattering plays a significant role in the proton loss phenomenon in energy 30-100 MeV during this storm. This work provides a beneficial help to comprehensively understand the charged particles trapping and loss in SAA region and inner radiation belt dynamic physics.</p>


Author(s):  
Honoka TODA ◽  
Wataru MIYAKE ◽  
Takefumi MITANI ◽  
Takeshi TAKASHIMA ◽  
Yoshizumi MIYOSHI ◽  
...  

2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


2019 ◽  
Vol 209 ◽  
pp. 01007
Author(s):  
Francesco Nozzoli

Precision measurements by AMS of the fluxes of cosmic ray positrons, electrons, antiprotons, protons as well as their rations reveal several unexpected and intriguing features. The presented measurements extend the energy range of the previous observations with much increased precision. The new results show that the behavior of positron flux at around 300 GeV is consistent with a new source that produce equal amount of high energy electrons and positrons. In addition, in the absolute rigidity range 60–500 GV, the antiproton, proton, and positron fluxes are found to have nearly identical rigidity dependence and the electron flux exhibits different rigidity dependence.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


2021 ◽  
Vol 502 (4) ◽  
pp. 5821-5838
Author(s):  
Ottavio Fornieri ◽  
Daniele Gaggero ◽  
Silvio Sergio Cerri ◽  
Pedro De La Torre Luque ◽  
Stefano Gabici

ABSTRACT We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic ray scattering on to magnetosonic and Alfvénic fluctuations in the GeV−PeV domain. We compute a set of diffusion coefficients from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated with both the Galactic halo and the extended disc, taking into account the different damping mechanisms of turbulent fluctuations acting in these environments. We confirm that the scattering rate associated with Alfvénic turbulence is highly suppressed if the anisotropy of the cascade is taken into account. On the other hand, we highlight that magnetosonic modes play a dominant role in Galactic confinement of cosmic rays up to PeV energies. We implement the diffusion coefficients in the numerical framework of the dragon code, and simulate the equilibrium spectrum of different primary and secondary cosmic ray species. We show that, for reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of $\simeq 200 \, \mathrm{GV}$) are correctly reproduced within our framework, in both normalization and slope.


2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2008 ◽  
Vol 42 (3) ◽  
pp. 403-408 ◽  
Author(s):  
S.P. Wakely ◽  
H.S. Ahn ◽  
P. Allison ◽  
M.G. Bagliesi ◽  
J.J. Beatty ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document