scholarly journals The interstellar medium in young supernova remnants: key to the production of cosmic X-rays and $\gamma $-rays

2021 ◽  
Vol 366 (6) ◽  
Author(s):  
Hidetoshi Sano ◽  
Yasuo Fukui

AbstractWe review recent progress in elucidating the relationship between high-energy radiation and the interstellar medium (ISM) in young supernova remnants (SNRs) with ages of ∼2000 yr, focusing in particular on RX J1713.7−3946 and RCW 86. Both SNRs emit strong nonthermal X-rays and TeV $\gamma $ γ -rays, and they contain clumpy distributions of interstellar gas that includes both atomic and molecular hydrogen. We find that shock–cloud interactions provide a viable explanation for the spatial correlation between the X-rays and ISM. In these interactions, the supernova shocks hit the typically pc-scale dense cores, generating a highly turbulent velocity field that amplifies the magnetic field up to 0.1–1 mG. This amplification leads to enhanced nonthermal synchrotron emission around the clumps, whereas the cosmic-ray electrons do not penetrate the clumps. Accordingly, the nonthermal X-rays exhibit a spatial distribution similar to that of the ISM on the pc scale, while they are anticorrelated at sub-pc scales. These results predict that hadronic $\gamma $ γ -rays can be emitted from the dense cores, resulting in a spatial correspondence between the $\gamma $ γ -rays and the ISM. The current pc-scale resolution of $\gamma $ γ -ray observations is too low to resolve this correspondence. Future $\gamma $ γ -ray observations with the Cherenkov Telescope Array will be able to resolve the sub-pc-scale $\gamma $ γ -ray distribution and provide clues to the origin of these cosmic $\gamma $ γ -rays.

1991 ◽  
Vol 143 ◽  
pp. 397-408
Author(s):  
Thierry Montmerle

Giant HII regions contain highly energetic objects: luminous, massive stars (including Wolf-Rayet stars) generating powerful winds, as well as, often, supernova remnants. These objects interact with the surrounding gas by creating shock waves. Part of the energy input is radiated away in the form of X-rays; also, protons and electrons may be accelerated in situ and generate γ-rays by collisions with the ionized gas. In addition, the stars themselves (including the accompanying low-mass PMS stars) are sources of X-rays, and W-R stars may emit continuum y-rays and are associated with nuclear γ-ray lines seen in the interstellar medium. Therefore, both through the stars they contain and through interactions within the gas, giant HII regions are, in addition to their more traditional properties and over nearly 7 decades in energy, important sources of high-energy radiation.


1998 ◽  
Vol 188 ◽  
pp. 117-120
Author(s):  
R. Petre ◽  
J. Keohane ◽  
U. Hwang ◽  
G. Allen ◽  
E. Gotthelf

The suggestion that the shocks of supernova remnants (SNR's) are cosmic ray acceleration sites dates back more than 40 years. While observations of nonthermal radio emission from SNR shells indicate the ubiquity of GeV cosmic ray production, there is still theoretical debate about whether SNR shocks accelerate particles up to the well-known “knee” in the primary cosmic ray spectrum at ~3,000 TeV. Recent X-ray observations of SN1006 and other SNR's may have provided the missing observational link between SNR shocks and high energy cosmic ray acceleration. We discuss these observations and their interpretation, and summarize our ongoing efforts to find evidence from X-ray observations of cosmic ray acceleration in the shells of other SNR's.


1996 ◽  
Vol 145 ◽  
pp. 323-331 ◽  
Author(s):  
Zhenru Wang

The oldest historical supernova (SN), recorded by ancient Chinese in 14th Century B.C. on pieces of tortoise shells or bones, is identified with the aid of modern space γ-ray observations. Hard X-rays with energy up to 20 keV were observed from IC 443 by the X-ray satellite Ginga. We infer from these observations the age of IC 443 is ∼ 1000 — 1400 yrs. The result supports the hypothesis that IC 443 is the remnant of the historical SN 837 that occurred during the Tang Dynasty. The association between the supernova remnant (SNR) CTB 80 and SN 1408 has been hotly debated for about ten years and is briefly reviewed and discussed here. A new picture is presented to explain this association. High energy emission from historical SNRs can persist in a multiphase interstellar medium (ISM). As a result, the study of the relationship between SNRs and ancient guest stars has gained new vitality.


1952 ◽  
Vol 5 (4) ◽  
pp. 581
Author(s):  
BM Spicer

The relationship between incident intensity of X-rays and the ionization produced by them in a small cavity behind an aluminium wall of given thickness has been derived, and calculations performed for a specific case. The conditions of validity of Gray's relation are the only ones imposed. The calculation was performed for monoenergetic radiation, and extended to the case of a bremsstrahlung spectrum of the form given by Schiff (Adams 1948). Comparison is made with the work of Fowler, Lauritsen, and Lauritsen (1948) and Lawson (1950).


1983 ◽  
Vol 101 ◽  
pp. 471-484 ◽  
Author(s):  
David J. Helfand

Neutron stars are the longest-lived remnants of supernova explosions. As a reservoir of thermal energy remaining from the explosion and generated by frictional coupling between core and crust, as a storehouse of magnetic and rotational kinetic energy which allows the star to act as a high energy particle accelerator, and as the source of a deep gravitational potential which can generate heat from infalling matter, neutron stars remain capable of producing high energy radiation for a Hubble time. We review here the results of an extensive survey of supernova remnants and radio pulsars with the imaging instruments on board the Einstein Observatory and discuss the implications of these results for pulsar physics and for the origin and evolution of galactic neutron stars.


1998 ◽  
Vol 15 (1) ◽  
pp. 136-140
Author(s):  
You-Hua Chu

AbstractThe Large Magellanic Cloud (LMC) has been surveyed in optical emission lines, X-rays, radio continuum, HI, and CO lines. These surveys provide views of the interstellar medium (ISM) in the LMC of unprecedented clarity, allowing us to study astrophysical processes and to examine the relationship among the different phases of the ISM. Multi-wavelength images are used to illustrate the physical structures of supernova remnants, superbubbles, and supergiant shells, as well as the global interstellar structure of the LMC.


2020 ◽  
Vol 496 (2) ◽  
pp. 2448-2461 ◽  
Author(s):  
Matteo Pais ◽  
Christoph Pfrommer ◽  
Kristian Ehlert ◽  
Maria Werhahn ◽  
Georg Winner

ABSTRACT Galactic cosmic rays (CRs) are believed to be accelerated at supernova remnant (SNR) shocks. In the hadronic scenario, the TeV gamma-ray emission from SNRs originates from decaying pions that are produced in collisions of the interstellar gas and CRs. Using CR-magnetohydrodynamic simulations, we show that magnetic obliquity-dependent shock acceleration is able to reproduce the observed TeV gamma-ray morphology of SNRs such as Vela Jr and SN1006 solely by varying the magnetic morphology. This implies that gamma-ray bright regions result from quasi-parallel shocks (i.e. when the shock propagates at a narrow angle to the upstream magnetic field), which are known to efficiently accelerate CR protons, and that gamma-ray dark regions point to quasi-perpendicular shock configurations. Comparison of the simulated gamma-ray morphology to observations allows us to constrain the magnetic coherence scale λB around Vela Jr and SN1006 to $\lambda _B \simeq 13_{-4.3}^{+13}$ pc and $\lambda _B \gt 200_{-40}^{+50}$ pc, respectively, where the ambient magnetic field of SN1006 is consistent with being largely homogeneous. We find consistent pure hadronic and mixed hadronic-leptonic models that both reproduce the multifrequency spectra from the radio to TeV gamma-rays and match the observed gamma-ray morphology. Finally, to capture the propagation of an SNR shock in a clumpy interstellar medium, we study the interaction of a shock with a dense cloud with numerical simulations and analytics. We construct an analytical gamma-ray model for a core collapse SNR propagating through a structured interstellar medium, and show that the gamma-ray luminosity is only biased by 30 per cent for realistic parameters.


2019 ◽  
Vol 209 ◽  
pp. 01003
Author(s):  
Antonio Marinelli ◽  
Dario Grasso ◽  
Sofia Ventura

The TeV/PeV neutrino emission from our Galaxy is related to the distribution of cosmic-ray accelerators, their maximal energy of injection as well as the propagation of injected particles and their interaction with molecular gas. In the last years Interesting upper limits on the diffuse hadronic emission from the whole Galaxy, massive molecular clouds and Fermi Bubbles were set by the IceCube and ANTARES as well as HAWC and Fermi-LAT observations. On the other hand no evidence of Galactic point-like excess has been observed up to now by high-energy neutrino telescopes. This result can be related to the short duration of the PeV hadronic activity of the sources responsible for the acceleration of primary protons, possibly including supernova remnants. All these aspects will be discussed in this work.


1974 ◽  
Vol 57 ◽  
pp. 421-422 ◽  
Author(s):  
Kenneth J. Frost

An instrument aboard the Fifth Orbiting Solar Observatory has observed hard solar X-rays from January 1969 to May 1972. A large number of X-ray bursts generated by solar cosmic ray flares have been observed. The X-ray bursts consist, in general, of two non-thermal components. The earliest occurring non-thermal component, coincident with the explosive phase, consists of a group of one to about ten X-ray bursts that are, for each burst, approximately 10 s duration and symmetrical in rise and decay. The time structure and multiplicity of these bursts is remarkably similar to that found in type III radio bursts in the meterwave band. The spectra of these bursts steepens sharply at energies greater than 100 keV indicating a limit at this energy for electron acceleration during the explosive or flash phase of the flare. For several flares these multiple X-ray bursts have occurred in coincidence with a group of type III bursts.


2013 ◽  
Vol 53 (A) ◽  
pp. 612-616
Author(s):  
Manami Sasaki

Supernova remnants, owing to their strong shock waves, are likely sources of Galactic cosmic rays. Studies of supernova remnants in X-rays and gamma rays provide us with new insights into the acceleration of particles to high energies. This paper reviews the basic physics of supernova remnant shocks and associated particle acceleration and radiation processes. In addition, the study of supernova remnant populations in nearby galaxies and the implications for Galactic cosmic ray distribution are discussed.


Sign in / Sign up

Export Citation Format

Share Document