scholarly journals Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments

Science ◽  
2019 ◽  
Vol 364 (6441) ◽  
pp. eaau3644 ◽  
Author(s):  
Anne-Sophie Hafner ◽  
Paul G. Donlin-Asp ◽  
Beulah Leitch ◽  
Etienne Herzog ◽  
Erin M. Schuman

There is ample evidence for localization of messenger RNAs (mRNAs) and protein synthesis in neuronal dendrites; however, demonstrations of these processes in presynaptic terminals are limited. We used expansion microscopy to resolve pre- and postsynaptic compartments in rodent neurons. Most presynaptic terminals in the hippocampus and forebrain contained mRNA and ribosomes. We sorted fluorescently labeled mouse brain synaptosomes and then sequenced hundreds of mRNA species present within excitatory boutons. After brief metabolic labeling, >30% of all presynaptic terminals exhibited a signal, providing evidence for ongoing protein synthesis. We tested different classic plasticity paradigms and observed distinct patterns of rapid pre- and/or postsynaptic translation. Thus, presynaptic terminals are translationally competent, and local protein synthesis is differentially recruited to drive compartment-specific phenotypes that underlie different forms of plasticity.

2018 ◽  
Author(s):  
Anne-Sophie Hafner ◽  
Paul G. Donlin-Asp ◽  
Beulah Leitch ◽  
Etienne Herzog ◽  
Erin M. Schuman

AbstractThere is ample evidence for localized mRNAs and protein synthesis in neuronal dendrites, however, demonstrations of these processes in presynaptic terminals are limited. We used expansion microscopy to resolve pre- and postsynaptic compartments in brain slices. Most presynaptic terminals in the hippocampus and forebrain contained mRNA and ribosomes. We sorted fluorescently labeled synaptosomes from mouse brain and then sequenced hundreds of mRNA species present within excitatory boutons. After brief metabolic labeling, more them 30% of all presynaptic terminals exhibited a signal, providing evidence for ongoing protein synthesis. We tested different classic plasticity paradigms and observed unique patterns of rapid pre- and/or postsynaptic translation. Thus presynaptic terminals are translationally competent and local protein synthesis is differentially recruited to drive compartment-specific phenotypes that underlie different forms of plasticity.One sentence summaryProtein synthesis occurs in all synaptic compartments, including excitatory and inhibitory axon terminals.


2019 ◽  
Vol 57 (3) ◽  
pp. 1529-1541 ◽  
Author(s):  
Carolina Cefaliello ◽  
Eduardo Penna ◽  
Carmela Barbato ◽  
Giuseppina Di Ruberto ◽  
Maria Pina Mollica ◽  
...  

2020 ◽  
Author(s):  
Robert Epple ◽  
Dennis Krüger ◽  
Tea Berulava ◽  
Gerrit Brehm ◽  
Rezaul Islam ◽  
...  

AbstractNeurons are highly compartmentalized cells that depend on local protein synthesis. Thus, messenger RNAs (mRNAs) have been detected in neuronal dendrites and more recently also at the pre- and postsynaptic compartment. Other RNA species, such as microRNAs, have also been described at synapses where they are believed to control mRNA availability for local translation. Nevertheless, a combined dataset analyzing the synaptic coding and non-coding RNAome via next-generation sequencing approaches is missing. Here we isolate synaptosomes from the hippocampus of young wild type mice and provide the coding and non-coding synaptic RNAome. These data are complemented by a novel approach to analyze the synaptic RNAome from primary hippocampal neurons grown in microfluidic chambers. Our data show that synaptic microRNAs control almost the entire synaptic mRNAome and we identified several hub microRNAs. By combining the in vivo synaptosomal data with our novel microfluidic chamber system, we also provide evidence to support the hypothesis that part of the synaptic microRNAome may be supplied to neurons via astrocytes. Moreover, the microfluidic system is suitable to study the dynamics of the synaptic RNAome in response to stimulation. In conclusion, our data provide a valuable resource and hint to several important targets for future experiments.


Science ◽  
2020 ◽  
Vol 367 (6477) ◽  
pp. eaay4991 ◽  
Author(s):  
Anne Biever ◽  
Caspar Glock ◽  
Georgi Tushev ◽  
Elena Ciirdaeva ◽  
Tamas Dalmay ◽  
...  

To accommodate their complex morphology, neurons localize messenger RNAs (mRNAs) and ribosomes near synapses to produce proteins locally. However, a relative paucity of polysomes (considered the active sites of translation) detected in electron micrographs of neuronal processes has suggested a limited capacity for local protein synthesis. In this study, we used polysome profiling together with ribosome footprinting of microdissected rodent synaptic regions to reveal a surprisingly high number of dendritic and/or axonal transcripts preferentially associated with monosomes (single ribosomes). Furthermore, the neuronal monosomes were in the process of active protein synthesis. Most mRNAs showed a similar translational status in the cell bodies and neurites, but some transcripts exhibited differential ribosome occupancy in the compartments. Monosome-preferring transcripts often encoded high-abundance synaptic proteins. Thus, monosome translation contributes to the local neuronal proteome.


Author(s):  
Shivani C. Kharod ◽  
Dong-Woo Hwang ◽  
Sulagna Das ◽  
Young J. Yoon

Neurons exhibit spatial compartmentalization of gene expression where localization of messenger RNAs (mRNAs) to distal processes allows for site-specific distribution of proteins through local translation. Recently, there have been reports of coordination between mRNA transport with vesicular and organellar trafficking. In this review, we will highlight the latest literature on axonal and dendritic local protein synthesis with links to mRNA–organelle cotransport followed by emerging technologies necessary to study these phenomena. Recent high-resolution imaging studies have led to insights into the dynamics of RNA–organelle interactions, and we can now peer into these intricate interactions within subcellular compartments of neurons.


Author(s):  
Robert Epple ◽  
Dennis Krüger ◽  
Tea Berulava ◽  
Gerrit Brehm ◽  
Momchil Ninov ◽  
...  

AbstractNeurons are highly compartmentalized cells that depend on local protein synthesis. Messenger RNAs (mRNAs) have thus been detected in neuronal dendrites, and more recently in the pre- and postsynaptic compartments as well. Other RNA species such as microRNAs have also been described at synapses where they are believed to control mRNA availability for local translation. A combined dataset analyzing the synaptic coding and non-coding RNAome via next-generation sequencing approaches is, however, still lacking. Here, we isolate synaptosomes from the hippocampus of young wild-type mice and provide the coding and non-coding synaptic RNAome. These data are complemented by a novel approach for analyzing the synaptic RNAome from primary hippocampal neurons grown in microfluidic chambers. Our data show that synaptic microRNAs control almost the entire synaptic mRNAome, and we identified several hub microRNAs. By combining the in vivo synaptosomal data with our novel microfluidic chamber system, our findings also support the hypothesis that part of the synaptic microRNAome may be supplied to neurons via astrocytes. Moreover, the microfluidic system is suitable for studying the dynamics of the synaptic RNAome in response to stimulation. In conclusion, our data provide a valuable resource and point to several important targets for further research.


Neuroreport ◽  
2003 ◽  
Vol 14 (10) ◽  
pp. 1357-1360 ◽  
Author(s):  
J. Brian McCarthy ◽  
Teresa A. Milner

Sign in / Sign up

Export Citation Format

Share Document