scholarly journals Reconfigurable ferromagnetic liquid droplets

Science ◽  
2019 ◽  
Vol 365 (6450) ◽  
pp. 264-267 ◽  
Author(s):  
Xubo Liu ◽  
Noah Kent ◽  
Alejandro Ceballos ◽  
Robert Streubel ◽  
Yufeng Jiang ◽  
...  

Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs.

2020 ◽  
Vol 31 ◽  
Author(s):  
Chung Do PHAM

In this work, we study the magnetic properties of nickel nanowires by measuring their anisotropic magnetoresistance at room temperature. The single nickel nanowire is grown by electrodeposition in a polymer membrane (Polycarbonate). We measure the anisotropic magnetoresistance effect of nickel nanowires for the various values of the magnitudes and orientations of an external magnetic field. The results clearly show the existence the anisotropic magnetoresistance effect in the nickel nanowires. Besides, the experimental data are best fit to the analytical calculations using the Stoner-Wohlfarth model for the magnetization of the wires.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17051-17057
Author(s):  
Anna Eichler-Volf ◽  
Yara Alsaadawi ◽  
Fernando Vazquez Luna ◽  
Qaiser Ali Khan ◽  
Simon Stierle ◽  
...  

PS/CoPd Janus particles respond very sensitively to application of low external magnetic fields. Owing to the magnetic properties, the PS/CoPd particles may be used, for example, to sense the presence of weak magnetic fields as micro-magnetometers.


2012 ◽  
Vol 430-432 ◽  
pp. 1979-1983
Author(s):  
Wei Bang Feng ◽  
Xue Yang ◽  
Zhi Qiang Lv

Magneto-rheological elastomer( MR elastomer) is an emerging intelligent material made up of macromolecule polymer and magnetic particles. While a promising wide application it has in the fields of warships vibration controlling for its controllable mechanical, electrical and magnetic properties by external magnetic field, design and application of devices based on it are facing great limitations imposed by its poor performance in mechanical properties and magneto effect. Aiming at developing a practical MR elastomer, a new confecting method was proposed in this paper. Then, following this new method and using a specificly designed solidifying matrix, an amido- polyester MR elastomer was developed with its mechanical property systemically explored.


2011 ◽  
Vol 687 ◽  
pp. 500-504
Author(s):  
S. X. Xue ◽  
S.S. Feng ◽  
P. Y. Cai ◽  
Q T Li ◽  
H. B. Wang

Ni54Mn21-xFexGa25(x=0,1,3,5,7,9)polycrystalline alloys were prepared by the technique of directional solidification and the effect of substituting Fe for Mn on the martensitic transformation and mechanical properties of the alloys was analyzed. It was found that the Curie temperature increased with increasing substitution while the martensitic transformation temperature decreased. The Fe-doped Ni54Mn21Ga25 alloys exhibit excellent magnetic properties at room temperature; the typical Ni54Mn20Fe1Ga25 alloy shows a large magnetic-induced-strain of -1040 ppm at a magnetic field of 4000 Oe.


2016 ◽  
Vol 7 ◽  
pp. 990-994 ◽  
Author(s):  
Xiaoyu Li ◽  
Lijuan Sun ◽  
Hu Wang ◽  
Kenan Xie ◽  
Qin Long ◽  
...  

In contrast to the majority of related experiments, which are carried out in organic solvents at high temperatures and pressures, cobalt nanowires were synthesized by chemical reduction in aqueous solution with the assistance of polyvinylpyrrolidone (PVP) as surfactant under moderate conditions for the first time, while an external magnetic field of 40 mT was applied. Uniform linear cobalt nanowires with relatively smooth surfaces and firm structure were obtained and possessed an average diameter of about 100 nm with a coating layer of PVP. By comparison, the external magnetic field and PVP were proven to have a crucial influence on the morphology and the size of the synthesized cobalt nanowires. The prepared cobalt nanowires are crystalline and mainly consist of cobalt as well as a small amount of platinum. Magnetic measurements showed that the resultant cobalt nanowires were ferromagnetic at room temperature. The saturation magnetization (M s) and the coercivity (H c) were 112.00 emu/g and 352.87 Oe, respectively.


2017 ◽  
Vol 217 ◽  
pp. 49-62 ◽  
Author(s):  
Bilal Alqasem ◽  
Noorhana Yahya ◽  
Saima Qureshi ◽  
Muhammad Irfan ◽  
Zia Ur Rehman ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 113-123
Author(s):  
Arnold S. Borukhovich

The results of the creation of a high-temperature spin injector based on EuO: Fe composite material are discussed. Their magnetic, electrical, structural and resonance parameters are given in a wide range of temperatures and an external magnetic field. A model calculation of the electronic spectrum of the solid solution Eu–Fe–O, responsible for the manifestation of the outstanding properties of the composite, is performed. The possibility of creating semiconductor spin electronics devices capable of operating at room temperature is shown.


2006 ◽  
Vol 73 (9) ◽  
Author(s):  
A. M. Abu-Labdeh ◽  
A. B. MacIsaac ◽  
J. P. Whitehead ◽  
K. De’Bell ◽  
M. G. Cottam

Sign in / Sign up

Export Citation Format

Share Document