Study of the Performance of Practical Magneto-Rheological Elastomers

2012 ◽  
Vol 430-432 ◽  
pp. 1979-1983
Author(s):  
Wei Bang Feng ◽  
Xue Yang ◽  
Zhi Qiang Lv

Magneto-rheological elastomer( MR elastomer) is an emerging intelligent material made up of macromolecule polymer and magnetic particles. While a promising wide application it has in the fields of warships vibration controlling for its controllable mechanical, electrical and magnetic properties by external magnetic field, design and application of devices based on it are facing great limitations imposed by its poor performance in mechanical properties and magneto effect. Aiming at developing a practical MR elastomer, a new confecting method was proposed in this paper. Then, following this new method and using a specificly designed solidifying matrix, an amido- polyester MR elastomer was developed with its mechanical property systemically explored.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Fei Guo ◽  
Cheng-bin Du ◽  
Guo-jun Yu ◽  
Run-pu Li

A novel magnetorheological material defined as magnetorheological Silly Putty (MRSP) is prepared by dispersing soft magnetic particles into Silly Putty matrix with shear stiffening property. Static mechanical properties including creep and stress relaxation and dynamic rheological properties of MRSPs are tested by rheometer. The experimental results indicate that the external magnetic field exerts significant influence on the creep and relaxation behaviors. Moreover, the storage modulus of MRSPs increases sharply in response to the external stimuli of increasing angular frequency automatically and can be enhanced by external magnetic field. Besides, temperature plays a key role in shear stiffening and magnetorheological effect of MRSPs. Furthermore, considering the obstruction to the particle chains formation induced by Silly Putty matrix, a nonperforative particle aggregated chains model is proposed. The model curve is in consistency with experimental data, which means it can describe magnetoinduced behavior of MRSPs well.


2011 ◽  
Vol 393-395 ◽  
pp. 161-165 ◽  
Author(s):  
Xin Wang ◽  
Jia Yuan Cai

Magnetorheological(MR) materials, which consist of magnetic particles in a non-magnetic medium can be divided into three kinds: MR fluid, MR foam and MR elastomer (MRE),MRE is a new branch of MR materials whose mechanical property can be changed quickly and reversibly by the application of an external magnetic field[1]. In this paper, the new research, typical modeling and various experiments will be reviewed and discussed. So far MREs have been used in tons of scientific filed owing to their significant advantages and MREs will have more promising applications.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 439-446
Author(s):  
Gildas Diguet ◽  
Gael Sebald ◽  
Masami Nakano ◽  
Mickaël Lallart ◽  
Jean-Yves Cavaillé

Magneto Rheological Elastomers (MREs) are composite materials based on an elastomer filled by magnetic particles. Anisotropic MRE can be easily manufactured by curing the material under homogeneous magnetic field which creates column of particles. The magnetic and elastic properties are actually coupled making these MREs suitable for energy conversion. From these remarkable properties, an energy harvesting device is considered through the application of a DC bias magnetic induction on two MREs as a metal piece is applying an AC shear strain on them. Such strain therefore changes the permeabilities of the elastomers, hence generating an AC magnetic induction which can be converted into AC electrical signal with the help of a coil. The device is simulated with a Finite Element Method software to examine the effect of the MRE parameters, the DC bias magnetic induction and applied shear strain (amplitude and frequency) on the resulting electrical signal.


RSC Advances ◽  
2021 ◽  
Vol 11 (28) ◽  
pp. 17051-17057
Author(s):  
Anna Eichler-Volf ◽  
Yara Alsaadawi ◽  
Fernando Vazquez Luna ◽  
Qaiser Ali Khan ◽  
Simon Stierle ◽  
...  

PS/CoPd Janus particles respond very sensitively to application of low external magnetic fields. Owing to the magnetic properties, the PS/CoPd particles may be used, for example, to sense the presence of weak magnetic fields as micro-magnetometers.


1990 ◽  
Vol 195 ◽  
Author(s):  
T.E. Schlesinger ◽  
A. Gavrin ◽  
R.C. Cammarata ◽  
C.-L. Chien

ABSTRACTThe mechanical properties of sputtered Ni-Al2O3 granular thin films were investigated by low load microharaness testing. It was found that the microhardness of these films displayed a percolation threshold at a nickel volume fraction of about 0.6, below which the hardness is greatly enhanced. This behavior is qualitatively similar to the electrical and magnetic properties of these types of films. A percolation threshold in hardness can be understood as due to a change in the mechanism for plastic deformation.


2011 ◽  
Vol 687 ◽  
pp. 500-504
Author(s):  
S. X. Xue ◽  
S.S. Feng ◽  
P. Y. Cai ◽  
Q T Li ◽  
H. B. Wang

Ni54Mn21-xFexGa25(x=0,1,3,5,7,9)polycrystalline alloys were prepared by the technique of directional solidification and the effect of substituting Fe for Mn on the martensitic transformation and mechanical properties of the alloys was analyzed. It was found that the Curie temperature increased with increasing substitution while the martensitic transformation temperature decreased. The Fe-doped Ni54Mn21Ga25 alloys exhibit excellent magnetic properties at room temperature; the typical Ni54Mn20Fe1Ga25 alloy shows a large magnetic-induced-strain of -1040 ppm at a magnetic field of 4000 Oe.


2007 ◽  
Vol 546-549 ◽  
pp. 1673-1676 ◽  
Author(s):  
Wei Jia Meng ◽  
Zhan Wen Huang ◽  
Yan Ju Liu ◽  
Xiao Rong Wu ◽  
Yi Sun

Magnetorheological (MR) fluids are suspensions of micron sized ferromagnetic particles dispersed in varying proportions of a variety of non-ferromagnetic fluids. MR fluids exhibit rapid, reversible and significant changes in their rheological (mechanical) properties while subjected to an external magnetic field. In this paper, a double-plate magneto-rheological fluid (MRF) clutch with controllable torque output have been designed. Electromagnetic finite element analysis is used to optimize the design of the clutch by using the commercial FEA software ANSYS.


2017 ◽  
Vol 217 ◽  
pp. 49-62 ◽  
Author(s):  
Bilal Alqasem ◽  
Noorhana Yahya ◽  
Saima Qureshi ◽  
Muhammad Irfan ◽  
Zia Ur Rehman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document