Stabilizing heterostructures of soft perovskite semiconductors

Science ◽  
2019 ◽  
Vol 365 (6454) ◽  
pp. 687-691 ◽  
Author(s):  
Yanbo Wang ◽  
Tianhao Wu ◽  
Julien Barbaud ◽  
Weiyu Kong ◽  
Danyu Cui ◽  
...  

Here we report a solution-processing strategy to stabilize the perovskite-based heterostructure. Strong Pb–Cl and Pb–O bonds formed between a [CH(NH2)2]x[CH3NH3]1−xPb1+yI3 film with a Pb-rich surface and a chlorinated graphene oxide layer. The constructed heterostructure can selectively extract photogenerated charge carriers and impede the loss of decomposed components from soft perovskites, thereby reducing damage to the organic charge-transporting semiconductors. Perovskite solar cells with an aperture area of 1.02 square centimeters maintained 90% of their initial efficiency of 21% after operation at the maximum power point under AM1.5G solar light (100 milliwatts per square centimeter) at 60°C for 1000 hours. The stabilized output efficiency of the aged device was further certified by an accredited test center.

2020 ◽  
Vol 6 (51) ◽  
pp. eabd1580
Author(s):  
Xiaodong Li ◽  
Sheng Fu ◽  
Wenxiao Zhang ◽  
Shanzhe Ke ◽  
Weijie Song ◽  
...  

One big challenge for long-lived inverted perovskite solar cells (PSCs) is that commonly used metal electrodes react with perovskite layer, inducing electrode corrosion and device degradation. Motivated by the idea of metal anticorrosion, here, we propose a chemical anticorrosion strategy to fabricate stable inverted PSCs through introducing a typical organic corrosion inhibitor of benzotriazole (BTA) before Cu electrode deposition. BTA molecules chemically coordinate to the Cu electrode and form an insoluble and polymeric film of [BTA-Cu], suppressing the electrochemical corrosion and reaction between perovskite and the Cu electrode. PSCs with BTA/Cu show excellent air stability, retaining 92.8 ± 1.9% of initial efficiency after aging for 2500 hours. In addition, >90% of initial efficiency is retained after 85°C aging for over 1000 hours. PSCs with BTA/Cu also exhibit good operational stability, and 88.6 ± 2.6% of initial efficiency is retained after continuous maximum power point tracking for 1000 hours.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Roberto Brenes ◽  
Madeleine Laitz ◽  
Joel Jean ◽  
Dane W. deQuilettes ◽  
Vladimir Bulović

2021 ◽  
Vol 11 (24) ◽  
pp. 11689
Author(s):  
Mritunjaya Parashar ◽  
Anupama B. Kaul

During recent years, power conversion efficiencies (PCEs) of organic-inorganic halide perovskite solar cells (PSCs) have shown remarkable progress. The emergence of various thin film deposition processes to produce perovskite films, notably using solution processing techniques, can be credited in part for this achievement. The engineering of chemical precursors using solution processing routes is a powerful approach for enabling low-cost and scalable solar fabrication processes. In the present study, we have conducted a systematic study to tune the equimolar precursor ratio of the organic halide (methylammonium iodide; MAI) and metal halide (lead iodide; PbI2) in a fixed solvent mixture of N,N-dimethylformamide (DMF):dimethylsulfoxide (DMSO). The surface morphology, optical characteristics, and crystallinity of the films produced with these four distinct solutions were investigated, and our analysis shows that the MAI:PbI2 (1.5:1.5) film is optimal under the current conditions. The PSCs fabricated from the (1.5:1.5) formulation were then integrated into the n-i-p solar cell architecture on fluorine-doped tin oxide (FTO) substrates, which exhibited a PCE of ~14.56%. Stability testing on this PSC device without encapsulation at 29 °C (ambient temperature) and 60% relative humidity (RH) under one-sun illumination while keeping the device at its maximum power point showed the device retained ~60% of initial PCE value after 10 h of continuous operation. Moreover, the recombination analysis between all four formulations showed that the bimolecular recombination and trap-assisted recombination appeared to be suppressed in the more optimal (1.5:1.5) PSC device when compared to the other formulations used in the n-i-p PSC architecture.


2017 ◽  
Vol 53 (11) ◽  
pp. 1829-1831 ◽  
Author(s):  
Rui Fu ◽  
Yicheng Zhao ◽  
Qi Li ◽  
Wenke Zhou ◽  
Dapeng Yu ◽  
...  

With 3-HP treatment, perovskite solar cells can give a steady and long-term output at maximum power point for more than 50 hours.


2019 ◽  
Vol 12 (2) ◽  
pp. 2417-2423 ◽  
Author(s):  
Ji A Hong ◽  
Eui Dae Jung ◽  
Jae Choul Yu ◽  
Dae Woo Kim ◽  
Yun Seok Nam ◽  
...  

2018 ◽  
Vol 6 (5) ◽  
pp. 2360-2364 ◽  
Author(s):  
Yusong Sheng ◽  
Anyi Mei ◽  
Shuang Liu ◽  
Miao Duan ◽  
Pei Jiang ◽  
...  

We report on a simple one-step solution processing strategy to fabricate new stable mixed cation/mixed halide (5-AVA)xMA1−xPbI3−y(BF4)y perovskite solar cells.


Solar RRL ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 1970024
Author(s):  
Lucija Rakocevic ◽  
Felix Ernst ◽  
Nadine T. Yimga ◽  
Saumye Vashishtha ◽  
Tom Aernouts ◽  
...  

2017 ◽  
Vol 5 (8) ◽  
pp. 3812-3818 ◽  
Author(s):  
Seulki Song ◽  
Maximilian T. Hörantner ◽  
Kyoungwon Choi ◽  
Henry J. Snaith ◽  
Taiho Park

We introduce a pin-hole free CH3NH3PbI3−xClx perovskite layer by using heated airflow during the nucleation stage. We control the nucleation stage which gives a pin-hole free planar perovskite with large grains, resulting in a maximum power point (MPP) efficiency of 14.3% and a high efficiency of 19.0% with reproducibility.


Solar RRL ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 1800287 ◽  
Author(s):  
Lucija Rakocevic ◽  
Felix Ernst ◽  
Nadine T. Yimga ◽  
Saumye Vashishtha ◽  
Tom Aernouts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document