scholarly journals Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth

Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. eaay3705 ◽  
Author(s):  
W. M. Grundy ◽  
M. K. Bird ◽  
D. T. Britt ◽  
J. C. Cook ◽  
D. P. Cruikshank ◽  
...  

The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU69) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide–rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin.

2008 ◽  
Vol 4 (S251) ◽  
pp. 327-328
Author(s):  
Mau C. Wong ◽  
Tim Cassidy ◽  
Robert E. Johnson

AbstractThe presence of an undersurface ocean renders Europa as one of the few planetary bodies in our Solar System that has been conjectured to have possibly harbored life. Some of the organic and inorganic species present in the ocean underneath are expected to transport upwards through the relatively thin ice crust and manifest themselves as impurities of the water ice surface. For this reason, together with its unique dynamic atmosphere and geological features, Europa has attracted strong scientific interests in past decades.Europa is imbedded inside the Jovian magnetosphere, and, therefore, is constantly subjected to the immerse surrounding radiations, similar to the other three Galilean satellites. The magnetosphere-atmosphere-surface interactions form a complex system that provides a multitude of interesting geophysical phenomenon that is unique in the Solar System. The atmosphere of Europa is thought to have created by, mostly, charged particles sputtering of surface materials. Consequently, the study of Europa's atmosphere can be used as a tool to infer the surface composition. In this paper, we will discuss our recent model studies of Europa's near-surface atmosphere. In particular, the abundances and distributions of the dominant O2 and H2O species, and of other organic and inorganic minor species will be addressed.


2021 ◽  
Author(s):  
Kiyoshi Kuramoto ◽  

<p>MMX (Martian Moons eXploration) is the 3rd sample return mission of JAXA/ISAS following Hayabusa and Hayabusa2. The MMX spacecraft will be launched in 2024 by an H-III rocket and make a round trip to the Martian system ~5 years. In the proximity of the Martian moons for 3 years, MMX will observe them along with the Martian atmosphere and surrounding space and conduct multiple landings on Phobos to collect Phoboss-indigenous materials. Owing to the lack of definitive evidence, the origin of Phobos and Deimos is under debate between the two leading hypotheses: the capture of volatile-rich primordial asteroid(s) and the in-situ formation from a debris disk that generated by a giant impact onto early Mars. Whichever theory is correct, the Martian moons likely preserve key records on the evolution of the early solar system and the formation of Mars. Through close-up observations of both moons and sample return from Phobos, MMX will settle the controversy of their origin, reveal their evolution, and elucidate the early solar system evolution around the region near the snow line. Global circulation and escape of the Martian atmosphere will also be monitored to reveal basic processes that have shaped and altered the Martian surface environment. The MMX spacecraft consists of three modules with chemical propulsion systems. By releasing used modules at appropriate timings, the spacecraft mass is reduced to allow orbital tuning to quasi-satellite orbits around Phobos, landings on Phobos surface, and the escape from the Martian gravity to return to the Earth. MMX will arrive at the Martian system in 2025 and start close-up observations of Phobos from quasi-satellite orbits. Among the total of 7 mounted instruments for scientific observations, TENGOO (telescope camera) and LIDAR will conduct high-resolution topography mapping and OROCHI (multi-band visible camera), MIRS (infra-red spectrometer provided by CNES), MEGANE (gamma-ray and neutron spectrometer provided by NASA), and MSA (ion mass spectrum analyzer) will survey surface composition and its heterogeneity. Hydrous minerals and interior ice are important observational targets because they, if identified, strongly support the capture hypothesis. Data taken by these instruments will be also useful for the landing site selection and characterization. Before the first landing, a rover (provided by CNES/DLR) will be released near the sampling site to collect data on surface regolith properties to be referred for the mothership landing operation. The rover will carry cameras, miniRAD (thermal mapper), and RAX (laser Raman spectrometer) to collect data on the physical and mineralogical characteristics of the Phobos surface around the sampling site. In early 2027, Mars will come to its closest approach to the Earth which minimizes the communication delay between the spacecraft and the Earth station. Together with the timing relatively far from Sun-Mars conjunctions and the Martian equinoxes, this period is the most favorable for landing operations that need real-time communication with the ground station and solar illumination undisturbed by eclipses. MMX will use two sampling systems, the C-sampler using a coring mechanism equipped on the tip of a manipulator and the P-sampler (provided by NASA) using a pneumatic mechanism equipped on a landing leg. After the stay near Phobos, the MMX spacecraft will be transferred to Deimos-flyby orbits to conduct Deimos observations, and then the return module will depart the Martian system in 2028. During the stay in the Martian system, MMX will also conduct wide-area observations of the Martian atmosphere using imagers (OROCHI, MIRS, and TENGOO) to study the atmospheric dynamics and the water vapor and dust transport. Simultanenousely, MSA will survey ions not only released and sputtered from Phobos's surface but also escaped from the Martian upper atmosphere. CMDM (dust monitor) will continuously survey the dust flux around the moons to assess the processes of space weathering by micrometeoroid bombardments and the possible formation of dust rings along the moons’ orbits. The sample capsule will come back to the Earth in 2029. Complimentarily with remote sensing studies, returned samples will provide us strong cosmo-chemical constraints for the origin of Phobos as well as those for early solar system processes.   </p>


2014 ◽  
Vol 407 ◽  
pp. 48-60 ◽  
Author(s):  
Devin L. Schrader ◽  
Jemma Davidson ◽  
Richard C. Greenwood ◽  
Ian A. Franchi ◽  
Jenny M. Gibson

2020 ◽  
Author(s):  
Billy Edwards ◽  
Marcell Tessenyi ◽  
Giorgio Savini ◽  
Giovanna Tinetti ◽  
Ian Stotesbury ◽  
...  

<p>The Twinkle Space Mission is a space-based observatory that has been conceived to measure the atmospheric composition of exoplanets, stars and solar system objects. The satellite is based on a high-heritage platform and will carry a 0.45 m telescope with a visible and infrared spectrograph providing simultaneous wavelength coverage from 0.5 - 4.5 μm. The spacecraft will be launched into a Sun-synchronous low-Earth polar orbit and will operate in this highly stable thermal environment for a baseline lifetime of seven years.</p> <p>Twinkle’s rapid pointing and non-sidereal tracking capabilities will enable the observation of a diverse array of Solar System objects, including asteroids and comets. Twinkle aims to provide a visible and near-infrared spectroscopic population study of asteroids and comets to study their surface composition and monitor activity. Its wavelength coverage and position above the atmosphere will make it particularly well-suited for studying hydration features that are obscured by telluric lines from the ground as well as searching for other spectral signatures such as organics, silicates and CO<sub>2</sub>.</p> <p>Twinkle is available for researchers around the globe in two ways:</p> <p>1) joining its collaborative multi-year survey programme, which will observe hundreds of exoplanets and solar system objects; and</p> <p>2) accessing dedicated telescope time on the spacecraft, which they can schedule for any combination of science cases.</p> <p>I will present an overview of Twinkle’s capabilities and discuss the broad range of targets the mission could observe, demonstrating the huge scientific potential of the spacecraft.</p>


2002 ◽  
Vol 12 ◽  
pp. 636
Author(s):  
Steve R. Ruff ◽  
Philip R. Christensen ◽  
Joshua L. Bandfield ◽  
Victoria E. Hamilton ◽  
Hugh H. Kieffer ◽  
...  

AbstractThe surface composition of Mars has been investigated using the Thermal Emission Spectrometer (TES) instrument during the mapping phase of the Mars Global Surveyor mission. The TES has mapped ~85% of the Martian surface at a resolution of 3-9 km. Separation of the atmospheric dust, water-ice cloud, CO2, water vapor, and surface components has been accomplished using radiative transfer and deconvolution. Two distinct surface compositional units have been mapped; (1) a basalt with plagioclase feldspar, Ca-rich pyroxene, minor sheet silicates; and (2) a basaltic andesite with silica glass, plagioclase, and minor pyroxene. Three large-scale (100’s km) accumulations of hematite have been found in Sinus Meridiani, Aram Chaos and Ophir/Candor Chasms. These regions are interpreted to be formed by aqueous precipitation under either ambient or hydrothermal conditions. No surfaces with detectable abundances of carbonate have been found. The albedo of the surface has been mapped with an absolute accuracy of ~1-2% and significant changes in surface albedo have occurred from the orbital measurements obtained by the Viking IRTM instrument.


Science ◽  
2020 ◽  
Vol 367 (6481) ◽  
pp. eaay6620 ◽  
Author(s):  
W. B. McKinnon ◽  
D. C. Richardson ◽  
J. C. Marohnic ◽  
J. T. Keane ◽  
W. M. Grundy ◽  
...  

The New Horizons spacecraft’s encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU69) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth’s contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System.


2021 ◽  
Author(s):  
Anikó Farkas-Takacs ◽  
Csaba Kiss ◽  
Sándor Góbi ◽  
Ákos Keresztúri

2020 ◽  
Author(s):  
Alessandro Morbidelli ◽  
David Nesvorny ◽  
William Bottke ◽  
Simone Marchi

<p>In this work we combine several constraints provided by the crater records on Arrokoth and the worlds of the Pluto system to compute the size-frequency distribution (SFD) of the crater production function for craters with diameter D≤ 10km. For this purpose, we use a Kuiper belt objects (KBO) population model calibrated on telescopic surveys, that describes also the evolution of the KBO population during the early Solar System. We further calibrate this model using the crater record on Pluto, Charon and Nix.  Using this model, we compute the impact probability of bodies with diameter d>2km on Arrokoth, integrated over the age of the Solar System, that we compare with the corresponding impact probability on Charon. Our result, together with the observed density of sub-km craters on Arrokoth's imaged surface, constrains the power law slope of the crater production function. Other constraints come from the absence of craters with 1<D<7km on Arrokoth, the existence of a single crater with D>7km and the relationship between the spatial density of sub-km craters on Arrokoth and of D ~ 20km craters on Charon. Together, these data suggest the crater production function on these worlds has a cumulative power law slope of -1.5<q<-1.2. Converted into a projectile SFD slope, we find -1.2<q<sub>KBO</sub><-1.0. These values are close to the cumulative slope of main belt asteroids in the 0.2-2km range, a population in collisional equilibrium (Bottke et al. 2020). For KBOs, however, this slope appears to extend down to objects a few tens of meters in diameter, as inferred from sub-km craters on Arrokoth. From the measurement of the dust density in the Kuiper belt made by the New Horizons mission, we predict that the SFD of the KBOs become steep again below approximately 30m. All these considerations strongly indicate that the size distribution of the KBO population is in collisional equilibrium.</p>


2004 ◽  
Vol 213 ◽  
pp. 218-224
Author(s):  
M. A. Kadooka ◽  
K. J. Meech ◽  
T. Chun

The recent discoveries of small bodies in the outer solar system in the vicinity of the Kuiper belt are revolutionizing solar system formation concepts by providing critical dynamical and compositional clues to its earliest epochs. However, the rapidly accelerating discovery rate means that follow-up observations for orbit determination cannot keep up. We report here on an innovative test program to assess the potential of a small (2-m class) educational outreach telescope to engage in an efficient recovery program. Recovery observations have been obtained over the course of 22 nights using the University of Hawaii 2.2m telescope during 9 observing runs. We targeted over 200 objects and have achieved a 75% success rate. We obtained time resolved resolved light curve photometry on 2000 OK67, and the partial light curve suggests a period T > 12 hr.


2021 ◽  
Author(s):  
Jessica Rigley ◽  
Mark Wyatt

<p>Models of the thermal emission of the zodiacal cloud and sporadic meteoroids suggest that the dominant source of interplanetary dust is Jupiter-family comets (JFCs). However, comet sublimation is insufficient to sustain the quantity of dust presently in the inner solar system. It has therefore been suggested that spontaneous disruptions of JFCs may supply the zodiacal cloud.</p> <p>We present a model for the dust produced in comet fragmentations and its evolution, comparing with the present day zodiacal cloud. Using results from dynamical simulations we follow individual JFCs as they evolve and undergo recurrent splitting events. The dust produced by these events is followed with a kinetic model which takes into account the effects of collisional evolution, Poynting-Robertson drag, and radiation pressure. This allows us to model both the size distribution and radial profile of dust resulting from comet fragmentation. Our model suggests that JFC fragmentations can produce enough dust to sustain the zodiacal cloud. We also discuss the feasibility of comet fragmentation producing the spatial and size distribution of dust seen in the zodiacal cloud.</p> <p>By modelling individual comets we are also able to explore the variability of cometary input to the zodiacal cloud. Comets are drawn from a size distribution based on the Kuiper belt and fragment randomly. We show that large comets should be scattered into the inner solar system stochastically, leading to large variations in the historical brightness of the zodiacal light.</p>


Sign in / Sign up

Export Citation Format

Share Document