scholarly journals Comet fragmentation as a source of the zodiacal cloud

2021 ◽  
Author(s):  
Jessica Rigley ◽  
Mark Wyatt

<p>Models of the thermal emission of the zodiacal cloud and sporadic meteoroids suggest that the dominant source of interplanetary dust is Jupiter-family comets (JFCs). However, comet sublimation is insufficient to sustain the quantity of dust presently in the inner solar system. It has therefore been suggested that spontaneous disruptions of JFCs may supply the zodiacal cloud.</p> <p>We present a model for the dust produced in comet fragmentations and its evolution, comparing with the present day zodiacal cloud. Using results from dynamical simulations we follow individual JFCs as they evolve and undergo recurrent splitting events. The dust produced by these events is followed with a kinetic model which takes into account the effects of collisional evolution, Poynting-Robertson drag, and radiation pressure. This allows us to model both the size distribution and radial profile of dust resulting from comet fragmentation. Our model suggests that JFC fragmentations can produce enough dust to sustain the zodiacal cloud. We also discuss the feasibility of comet fragmentation producing the spatial and size distribution of dust seen in the zodiacal cloud.</p> <p>By modelling individual comets we are also able to explore the variability of cometary input to the zodiacal cloud. Comets are drawn from a size distribution based on the Kuiper belt and fragment randomly. We show that large comets should be scattered into the inner solar system stochastically, leading to large variations in the historical brightness of the zodiacal light.</p>


1996 ◽  
Vol 150 ◽  
pp. 163-166
Author(s):  
Jer-Chyi Liou ◽  
Herbert A. Zook ◽  
Stanley F. Dermott

AbstractThe recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population at 1 AU. We have completed a numerical study of the orbital evolution of dust grains, of diameters 1 to 9 μm, that originate in the region of the Kuiper belt. Our results show that about 80% of the grains are ejected from the Solar System by the giant planets while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, these dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances to be captured by the Earth and makes them a possible source of the collected interplanetary dust particles (IDPs); in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth.When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains larger than about 9 μm appear likely to be collisionally shattered before they can evolve to the inner part of the Solar System. Therefore, Kuiper belt dust grains may not, as they are expected to be small, contribute significantly to the zodiacal light.



1976 ◽  
Vol 31 ◽  
pp. 121-121
Author(s):  
R. Robley

Assuming that the decrease in the density of the interplanetary dust follows an exponential distribution both in the transverse and radial direction, we can write n = no Exp(-(h/H)-(r-l/R)), where h is the distance from the ecliptic plane and r the heliocentric distance both expressed in astronomical units (a.u.); then we show that the modulation of the radiance B(90, 0) of the zodiacal light observed at the ecliptic pole defines the parameter H as a function of the inclination angle B between the zodiacal cloud and the ecliptic plane; moreover, the experimental value of the ratio B(90, 0)/B(90, 90) defines the parameter R. It can be deduced that the flatness of the zodiacal cloud, expressed by R/H, is < 5 and that the plane of symmetry of the zodiacal cloud is very close to that of the invariant plane of the solar system (B<2°).



1991 ◽  
Vol 126 ◽  
pp. 131-138
Author(s):  
A.C. Levasseur-Regourd ◽  
J.B. Renard ◽  
R. Dumont

AbstractThe physical properties of the interplanetary dust grains are, out of the ecliptic plane, mainly derived from observations of zodiacal light in the visual or infrared domains. The bulk optical properties (polarization, albedo) of the grains are demonstrated to depend upon their distance to the Sun (at least in a 0.1 AU to 1.7 AU range in the symmetry plane) and upon the inclination of their orbits (at least up to 22°). Classical models assuming the homogeneity of the zodiacal cloud are no longer acceptable. A hybrid model, with a mixture of two populations, is proposed. It suggests that various sources (periodic comets, asteroids, non periodic comets...) play an important role in the replenishment of the zodiacal cloud complex.



1994 ◽  
Vol 160 ◽  
pp. 367-380
Author(s):  
Eberhard Grün

In-situ measurements of micrometeoroids provide information on the spatial distribution of interplanetary dust and its dynamical properties. Pioneers 10 and 11, Galileo and Ulysses spaceprobes took measurements of interplanetary dust from 0.7 to 18 AU distance from the sun. Distinctly different populations of dust particles exist in the inner and outer solar system. In the inner solar system, out to about 3 AU, zodiacal dust particles are recognized by their scattered light, their thermal emission and by in-situ detection from spaceprobes. These particles orbit the sun on low inclination (i ≤ 30°) and moderate eccentricity (e ≤ 0.6) orbits. Their spatial density falls off with approximately the inverse of the solar distance. Dust particles on high inclination or even retrograde trajectories dominate the dust population outside about 3 AU. The dust detector on board the Ulysses spaceprobe identified interstellar dust sweeping through the outer solar system on hyperbolic trajectories. Within about 2 AU from Jupiter Ulysses discovered periodic streams of dust particles originating from within the jovian system.



Author(s):  
George J. Flynn

Scattered sunlight from interplanetary dust particles, mostly produced by comets and asteroids, orbiting the Sun are visible at dusk or dawn as the Zodiacal Cloud. Impacts onto the space-exposed surfaces of Earth-orbiting satellites indicate that, in the current era, thousands of tons of interplanetary dust enters the Earth’s atmosphere every year. Some particles vaporize forming meteors while others survive atmospheric deceleration and settle to the surface of the Earth. NASA has collected interplanetary dust particles from the Earth’s stratosphere using high-altitude aircraft since the mid-1970s. Detailed characterization of these particles shows that some are unique samples of Solar System and presolar material, never affected by the aqueous and thermal processing that overprints the record of formation from the Solar Protoplanetary Disk in the meteorites. These particles preserve the record of grain and dust formation from the disk. This record suggests that many of the crystalline minerals, dominated by crystalline silicates (olivine and pyroxene) and Fe-sulfides, condensed from gas in the inner Solar System and were then transported outward to the colder outer Solar System where carbon-bearing ices condensed on the surfaces of the grains. Irradiation by solar ultraviolet light and cosmic rays produced thin organic coatings on the grain surfaces that likely aided in grain sticking, forming the first dust particles of the Solar System. This continuous, planet-wide rain of interplanetary dust particles can be monitored by the accumulation of 3He, implanted into the interplanetary dust particles by the Solar Wind while they were in space, in oceanic sediments. The interplanetary dust, which is rich in organic carbon, may have contributed important pre-biotic organic matter important to the development of life to the surface of the early Earth.



1991 ◽  
Vol 126 ◽  
pp. 171-178
Author(s):  
Martha S. Hanner

AbstractThermal emission from interplanetary dust is the main source of diffuse radiation atλ5-50 μm. Analysis of infrared sky maps from IRAS and ZIP lead to the result that the average optical properties of the dust change with heliocentric distance. The present uncertainties in calibration should be resolved by COBE. Existence of a dust sublimation zone at 4 solar radii awaits confirmation at the next solar eclipse.



2021 ◽  
Author(s):  
Saliha Eren ◽  
Ingrid Mann

&lt;p&gt;This presentation is related to model calculations of the circumsolar dust brightness that is seen in the F-corona and inner Zodiacal light. We calculate the brightness integral that includes the size distribution of the interplanetary dust, the spatial distribution, and the scattering properties. The scattering properties are estimated with Mie calculations of spherical particles consisting of astronomical silicate. We consider different size distributions of the dust particles with sizes between 1 nanometre - 100 micrometre. It was recently discussed that the extension of the dust-free zone can be inferred from the slope of the F-corona brightness seen in new observations received from the WISPR instrument on the NASA Parker Solar Probe (Stenborg et al., 2020). We, therefore, investigate the influence of the dust-free zone on the brightness and compare it to the influence that the dust size distribution has.&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;1. G. Stenborg, R. A. Howard, P. Hess, B. Gallagher, PSP/WISPR observations of dust density depletion near the Sun I. Remote observations to 8 Rsol from an observer between 0.13-0.35 AU, A&amp;A, Forthcoming article, 2020. DOI:&amp;#160;10.1051/0004-6361/202039284&lt;/p&gt;



2008 ◽  
Vol 4 (T27A) ◽  
pp. 171-173
Author(s):  
Adolf N. Witt ◽  
Jayant Murthy ◽  
Bo Å. S. Gustafson ◽  
W. Jack Baggaley ◽  
Eli Dwek ◽  
...  

Commission 21 consists of IAU members and consultants with expertise and interest in the study of the light of the night sky and its various diffuse components, at all accessible electromagnetic frequencies. In cosmic distance scales, the subjects of Commission 21 range from airglow and tropospheric scattering in Earth's atmosphere, through zodiacal light in the solar system, including thermal emission from interplanetary dust, integrated starlight in the Milky Way galaxy, diffuse galactic light due to dust scattering in the galactic diffuse interstellar medium, thermal emissions from interstellar dust and free free emission from ionized interstellar gas, to various diffuse extragalactic background sources, including the cosmologically important cosmic microwave background (CMB). Observations of the diffuse night sky brightness at any frequency typically include signals from several of these sources, and it has been the historic mandate of Commission 21 to foster the necessary collaboration of experts from the different astronomical sub-disciplines involved.



1996 ◽  
Vol 150 ◽  
pp. 141-153 ◽  
Author(s):  
S.F. Dermott ◽  
K. Grogan ◽  
B.Å.S. Gustafson ◽  
S. Jayaraman ◽  
S.J. Kortenkamp ◽  
...  

AbstractAsteroids, comets and interstellar dust are possible sources of the particles that constitute the dust in the inner solar system. Each of these components gives rise to particular, characteristic features, the amplitudes of which can be used to estimate the size of the associated source. The asteroidal component feeds the dust bands and the Earth's resonant ring, while the cometary component may account for the large scale height of the zodiacal cloud observed at 1 AU Previous discussions of the observed strengths of these various features indicated that the source of about one third of the thermal flux observed, for example, in the IRAS 25μm waveband is asteroidal, while two thirds is cometary. However, a variety of assumptions go into this calculation (the size-frequency distribution of the particles is particularly significant) and we now know that the result is highly dependent on these assumptions. The zodiacal cloud is also the source of the IDPs collected on Earth. Because of strong gravitational focusing by the Earth of particles in low e and I orbits, it is probable that the majority of IDPs originate from asteroids, particularly those asteroids in the Themis and Koronis families.



1991 ◽  
Vol 126 ◽  
pp. 199-202
Author(s):  
J.B. Renard ◽  
A.C. Levasseur-Regourd ◽  
R. Dumont

AbstractLocal intensity and emissivity, and consequently local polarization degree, temperature and albedo, can be retrieved from optical and thermal observations of zodiacal light. The local polarization degree (normalized at constant solar distance and phase angle) is found to decrease with elevation above the symmetry plane of the zodiacal cloud. The heterogeneity of the cloud, established towards the symmetry pole, is here demonstrated in the tangential plane (almost perpendicular to the ecliptic plane at 1 AU). We present a map of the local polarization degree in this plane.



Sign in / Sign up

Export Citation Format

Share Document