scholarly journals Architecture of a catalytically active homotrimeric plant cellulose synthase complex

Science ◽  
2020 ◽  
Vol 369 (6507) ◽  
pp. 1089-1094 ◽  
Author(s):  
Pallinti Purushotham ◽  
Ruoya Ho ◽  
Jochen Zimmer

Cellulose is an essential plant cell wall component and represents the most abundant biopolymer on Earth. Supramolecular plant cellulose synthase complexes organize multiple linear glucose polymers into microfibrils as load-bearing wall components. We determined the structure of a poplar cellulose synthase CesA homotrimer that suggests a molecular basis for cellulose microfibril formation. This complex, stabilized by cytosolic plant-conserved regions and helical exchange within the transmembrane segments, forms three channels occupied by nascent cellulose polymers. Secretion steers the polymers toward a common exit point, which could facilitate protofibril formation. CesA’s N-terminal domains assemble into a cytosolic stalk that interacts with a microtubule-tethering protein and may thus be involved in CesA localization. Our data suggest how cellulose synthase complexes assemble and provide the molecular basis for plant cell wall engineering.

2012 ◽  
Vol 102 (3) ◽  
pp. 590a-591a
Author(s):  
Andreia M. Smith-Moritz ◽  
Jeemeng Lao ◽  
Joshua L. Heazlewood ◽  
Pamela C. Ronald ◽  
Miguel E. Vega-Sanchez

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4335
Author(s):  
Gerasimos Daras ◽  
Dimitris Templalexis ◽  
Fengoula Avgeri ◽  
Dikran Tsitsekian ◽  
Konstantina Karamanou ◽  
...  

The wall is the last frontier of a plant cell involved in modulating growth, development and defense against biotic stresses. Cellulose and additional polysaccharides of plant cell walls are the most abundant biopolymers on earth, having increased in economic value and thereby attracted significant interest in biotechnology. Cellulose biosynthesis constitutes a highly complicated process relying on the formation of cellulose synthase complexes. Cellulose synthase (CesA) and Cellulose synthase-like (Csl) genes encode enzymes that synthesize cellulose and most hemicellulosic polysaccharides. Arabidopsis and rice are invaluable genetic models and reliable representatives of land plants to comprehend cell wall synthesis. During the past two decades, enormous research progress has been made to understand the mechanisms of cellulose synthesis and construction of the plant cell wall. A plethora of cesa and csl mutants have been characterized, providing functional insights into individual protein isoforms. Recent structural studies have uncovered the mode of CesA assembly and the dynamics of cellulose production. Genetics and structural biology have generated new knowledge and have accelerated the pace of discovery in this field, ultimately opening perspectives towards cellulose synthesis manipulation. This review provides an overview of the major breakthroughs gathering previous and recent genetic and structural advancements, focusing on the function of CesA and Csl catalytic domain in plants.


2001 ◽  
pp. 179-195 ◽  
Author(s):  
Catherine P. Darley ◽  
Andrew M. Forrester ◽  
Simon J. McQueen-Mason

Author(s):  
M.A. Zhivetiev ◽  
◽  
A.V. Papkina ◽  
I.A. Graskova ◽  
V.K. Voinikov ◽  
...  

Author(s):  
Venkatasubramanian Sivakumar

Background: In the growing environmental concern use of natural products, efficient processes and devices are necessary. Solid-Liquid extraction of active Ingredients from Plant materials is one of the important unit operations in Chemical Engineering and need to be enhanced. Objectives: Since, these active ingredients are firmly bound to the plant cell wall membrane, which pose mass-transfer resistance and need to get detached through the use of suitable process intensification tools such as ultrasound and suitable devices. Therefore, detailed analysis and review is essential on development made in this area through Publications and Patents. Hence, the present paper illustrates the development of ultrasound assisted device for solid-liquid extraction are presented in this paper. Methods: Advantages such as % Yield, Reduction in extraction time, use of ambient conditions, better process control, avoidance or minimizing multi stage extraction could be achieved due to the use of ultrasound in extraction as compared to conventional processes. Conclusions: Use of ultrasound to provide significant improvements in the extraction of Vegetable tannins, Natural dyes for application in Leather processing has been demonstrated and reported earlier. These enhancement could be possible through various effects of ultrasound such as better flow of solvents through micro-jet formation, mass transfer enhancement due to rupture of plant cell wall membranes through acoustic cavitation, better leaching due to micro-mixing and acoustic streaming effects. This approach would minimize material wastage; thereby, leading to eco-conservation of plant materials, which is very much essential for better environment. Hence, various methods and design for application of ultrasound assisted solid-liquid extractor device are necessary.


Sign in / Sign up

Export Citation Format

Share Document