cellulose synthase complex
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Thomas H Wilson ◽  
Manoj Kumar ◽  
Simon R Turner

The material properties of cellulose are heavily influenced by the organisation of β-1,4-glucan chains into a microfibril. It is likely that the structure of this microfibril is determined by the spatial arrangement of catalytic cellulose synthase (CESA) proteins within the cellulose synthase complex (CSC). In land plants, CESA proteins form a large complex composed of a hexamer of trimeric lobes termed the rosette. Each rosette synthesises a single microfibril likely composed of 18 glucan chains. In this review, the biochemical events leading to plant CESA protein assembly into the rosette are explored. The protein interfaces responsible for CESA trimerization are formed by regions that define rosette-forming CESA proteins. As a consequence, these regions are absent from the ancestral bacterial cellulose synthases (BcsAs) that do not form rosettes. CSC assembly occurs within the context of the endomembrane system, however the site of CESA assembly into trimers and rosettes is not determined. Both the N-Terminal Domain and Class Specific Region of CESA proteins are intrinsically disordered and contain all of the identified phosphorylation sites, making both regions candidates as sites for protein–protein interactions and inter–lobe interface formation. We propose a sequential assembly model, whereby CESA proteins form stable trimers shortly after native folding, followed by sequential recruitment of lobes into a rosette, possibly assisted by Golgi-localised STELLO proteins. A comprehensive understanding of CESA assembly into the CSC will enable directed engineering of CESA protein spatial arrangements, allowing changes in cellulose crystal packing that alter its material properties.


Science ◽  
2020 ◽  
Vol 369 (6507) ◽  
pp. 1089-1094 ◽  
Author(s):  
Pallinti Purushotham ◽  
Ruoya Ho ◽  
Jochen Zimmer

Cellulose is an essential plant cell wall component and represents the most abundant biopolymer on Earth. Supramolecular plant cellulose synthase complexes organize multiple linear glucose polymers into microfibrils as load-bearing wall components. We determined the structure of a poplar cellulose synthase CesA homotrimer that suggests a molecular basis for cellulose microfibril formation. This complex, stabilized by cytosolic plant-conserved regions and helical exchange within the transmembrane segments, forms three channels occupied by nascent cellulose polymers. Secretion steers the polymers toward a common exit point, which could facilitate protofibril formation. CesA’s N-terminal domains assemble into a cytosolic stalk that interacts with a microtubule-tethering protein and may thus be involved in CesA localization. Our data suggest how cellulose synthase complexes assemble and provide the molecular basis for plant cell wall engineering.


Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 53 ◽  
Author(s):  
Marcus Woodley ◽  
Adam Mulvihill ◽  
Miki Fujita ◽  
Geoffrey Wasteneys

Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 52 ◽  
Author(s):  
Tori Speicher ◽  
Patrick Li ◽  
Ian Wallace

Author(s):  
Simon Turner ◽  
Manoj Kumar

Cellulose consists of linear chains of β-1,4-linked glucose units, which are synthesized by the cellulose synthase complex (CSC). In plants, these chains associate in an ordered manner to form the cellulose microfibrils. Both the CSC and the local environment in which the individual chains coalesce to form the cellulose microfibril determine the structure and the unique physical properties of the microfibril. There are several recent reviews that cover many aspects of cellulose biosynthesis, which include trafficking of the complex to the plasma membrane and the relationship between the movement of the CSC and the underlying cortical microtubules (Bringmann et al. 2012 Trends Plant Sci. 17 , 666–674 ( doi:10.1016/j.tplants.2012.06.003 ); Kumar & Turner 2015 Phytochemistry 112 , 91–99 ( doi:10.1016/j.phytochem.2014.07.009 ); Schneider et al. 2016 Curr. Opin. Plant Biol. 34 , 9–16 ( doi:10.1016/j.pbi.2016.07.007 )). In this review, we will focus on recent advances in cellulose biosynthesis in plants, with an emphasis on our current understanding of the structure of individual catalytic subunits together with the local membrane environment where cellulose synthesis occurs. We will attempt to relate this information to our current knowledge of the structure of the cellulose microfibril and propose a model in which variations in the structure of the CSC have important implications for the structure of the cellulose microfibril produced. This article is part of a discussion meeting issue ‘New horizons for cellulose nanotechnology’.


PLoS ONE ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. e0176550 ◽  
Author(s):  
Sandra Mara Naressi Scapin ◽  
Flavio Henrique Moreira Souza ◽  
Leticia Maria Zanphorlin ◽  
Thamyres Silva de Almeida ◽  
Youssef Bacila Sade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document