scholarly journals Dependence of Plant Cell Wall Composition and Structure on Cellulose Synthase-Like Knock Out Mutant

2012 ◽  
Vol 102 (3) ◽  
pp. 590a-591a
Author(s):  
Andreia M. Smith-Moritz ◽  
Jeemeng Lao ◽  
Joshua L. Heazlewood ◽  
Pamela C. Ronald ◽  
Miguel E. Vega-Sanchez
2019 ◽  
Vol 179 (1) ◽  
pp. 16-17 ◽  
Author(s):  
Leonor C. Boavida

2018 ◽  
Vol 19 (9) ◽  
pp. 2691 ◽  
Author(s):  
Michael Ogden ◽  
Rainer Hoefgen ◽  
Ute Roessner ◽  
Staffan Persson ◽  
Ghazanfar Khan

Nutrients are critical for plants to grow and develop, and nutrient depletion severely affects crop yield. In order to optimize nutrient acquisition, plants adapt their growth and root architecture. Changes in growth are determined by modifications in the cell walls surrounding every plant cell. The plant cell wall, which is largely composed of complex polysaccharides, is essential for plants to attain their shape and to protect cells against the environment. Within the cell wall, cellulose strands form microfibrils that act as a framework for other wall components, including hemicelluloses, pectins, proteins, and, in some cases, callose, lignin, and suberin. Cell wall composition varies, depending on cell and tissue type. It is governed by synthesis, deposition and remodeling of wall components, and determines the physical and structural properties of the cell wall. How nutrient status affects cell wall synthesis and organization, and thus plant growth and morphology, remains poorly understood. In this review, we aim to summarize and synthesize research on the adaptation of root cell walls in response to nutrient availability and the potential role of cell walls in nutrient sensing.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yuan Zhang ◽  
Allan M. Showalter

For the past 5 years, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) technology has appeared in the molecular biology research spotlight. As a game-changing player in genome editing, CRISPR/Cas9 technology has revolutionized animal research, including medical research and human gene therapy as well as plant science research, particularly for crop improvement. One of the most common applications of CRISPR/Cas9 is to generate genetic knock-out mutants. Recently, several multiplex genome editing approaches utilizing CRISPR/Cas9 were developed and applied in various aspects of plant research. Here we summarize these approaches as they relate to plants, particularly with respect to understanding the biosynthesis and function of the plant cell wall. The plant cell wall is a polysaccharide-rich cell structure that is vital to plant cell formation, growth, and development. Humans are heavily dependent on the byproducts of the plant cell wall such as shelter, food, clothes, and fuel. Genes involved in the assembly of the plant cell wall are often highly redundant. To identify these redundant genes, higher-order knock-out mutants need to be generated, which is conventionally done by genetic crossing. Compared with genetic crossing, CRISPR/Cas9 multi-gene targeting can greatly shorten the process of higher-order mutant generation and screening, which is especially useful to characterize cell wall related genes in plant species that require longer growth time. Moreover, CRISPR/Cas9 makes it possible to knock out genes when null T-DNA mutants are not available or are genetically linked. Because of these advantages, CRISPR/Cas9 is becoming an ideal and indispensable tool to perform functional studies in plant cell wall research. In this review, we provide perspectives on how to design CRISPR/Cas9 to achieve efficient gene editing and multi-gene targeting in plants. We also discuss the recent development of the virus-based CRISPR/Cas9 system and the application of CRISPR/Cas9 to knock in genes. Lastly, we summarized current progress on using CRISPR/Cas9 for the characterization of plant cell wall-related genes.


2018 ◽  
Vol 5 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Thatiane Rodrigues Mota ◽  
Dyoni Matias de Oliveira ◽  
◽  
Rogério Marchiosi ◽  
Osvaldo Ferrarese-Filho ◽  
...  

1997 ◽  
Vol 100 (3) ◽  
pp. 729-738 ◽  
Author(s):  
M. C. McCann ◽  
L. Chen ◽  
K. Roberts ◽  
E. K. Kemsley ◽  
C. Sene ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Svenning Rune Møller ◽  
Xueying Yi ◽  
Silvia Melina Velásquez ◽  
Sascha Gille ◽  
Pernille Louise Munke Hansen ◽  
...  

Abstract Extensins are plant cell wall glycoproteins that act as scaffolds for the deposition of the main wall carbohydrate polymers, which are interlocked into the supramolecular wall structure through intra- and inter-molecular iso-di-tyrosine crosslinks within the extensin backbone. In the conserved canonical extensin repeat, Ser-Hyp4, serine and the consecutive C4-hydroxyprolines (Hyps) are substituted with an α-galactose and 1–5 β- or α-linked arabinofuranoses (Arafs), respectively. These modifications are required for correct extended structure and function of the extensin network. Here, we identified a single Arabidopsis thaliana gene, At3g57630, in clade E of the inverting Glycosyltransferase family GT47 as a candidate for the transfer of Araf to Hyp-arabinofuranotriose (Hyp-β1,4Araf-β1,2Araf-β1,2Araf) side chains in an α-linkage, to yield Hyp-Araf 4 which is exclusively found in extensins. T-DNA knock-out mutants of At3g57630 showed a truncated root hair phenotype, as seen for mutants of all hitherto characterized extensin glycosylation enzymes; both root hair and glycan phenotypes were restored upon reintroduction of At3g57630. At3g57630 was named Extensin Arabinose Deficient transferase, ExAD, accordingly. The occurrence of ExAD orthologs within the Viridiplantae along with its’ product, Hyp-Araf 4, point to ExAD being an evolutionary hallmark of terrestrial plants and charophyte green algae.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4335
Author(s):  
Gerasimos Daras ◽  
Dimitris Templalexis ◽  
Fengoula Avgeri ◽  
Dikran Tsitsekian ◽  
Konstantina Karamanou ◽  
...  

The wall is the last frontier of a plant cell involved in modulating growth, development and defense against biotic stresses. Cellulose and additional polysaccharides of plant cell walls are the most abundant biopolymers on earth, having increased in economic value and thereby attracted significant interest in biotechnology. Cellulose biosynthesis constitutes a highly complicated process relying on the formation of cellulose synthase complexes. Cellulose synthase (CesA) and Cellulose synthase-like (Csl) genes encode enzymes that synthesize cellulose and most hemicellulosic polysaccharides. Arabidopsis and rice are invaluable genetic models and reliable representatives of land plants to comprehend cell wall synthesis. During the past two decades, enormous research progress has been made to understand the mechanisms of cellulose synthesis and construction of the plant cell wall. A plethora of cesa and csl mutants have been characterized, providing functional insights into individual protein isoforms. Recent structural studies have uncovered the mode of CesA assembly and the dynamics of cellulose production. Genetics and structural biology have generated new knowledge and have accelerated the pace of discovery in this field, ultimately opening perspectives towards cellulose synthesis manipulation. This review provides an overview of the major breakthroughs gathering previous and recent genetic and structural advancements, focusing on the function of CesA and Csl catalytic domain in plants.


1997 ◽  
Vol 100 (3) ◽  
pp. 729-738 ◽  
Author(s):  
M. C. McCann ◽  
L. Chen ◽  
K. Roberts ◽  
E. K. Kemsley ◽  
C. Sene ◽  
...  

2019 ◽  
Vol 77 (11) ◽  
pp. 2049-2077 ◽  
Author(s):  
Nora Gigli-Bisceglia ◽  
Timo Engelsdorf ◽  
Thorsten Hamann

AbstractThe walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.


Sign in / Sign up

Export Citation Format

Share Document