scholarly journals Super-resolution lightwave tomography of electronic bands in quantum materials

Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. 1204-1207
Author(s):  
M. Borsch ◽  
C. P. Schmid ◽  
L. Weigl ◽  
S. Schlauderer ◽  
N. Hofmann ◽  
...  

Searching for quantum functionalities requires access to the electronic structure, constituting the foundation of exquisite spin-valley–electronic, topological, and many-body effects. All-optical band-structure reconstruction could directly connect electronic structure with the coveted quantum phenomena if strong lightwaves transported localized electrons within preselected bands. Here, we demonstrate that harmonic sideband (HSB) generation in monolayer tungsten diselenide creates distinct electronic interference combs in momentum space. Locating these momentum combs in spectroscopy enables super-resolution tomography of key band-structure details in situ. We experimentally tuned the optical-driver frequency by a full octave and show that the predicted super-resolution manifests in a critical intensity and frequency dependence of HSBs. Our concept offers a practical, all-optical, fully three-dimensional tomography of electronic structure even in microscopically small quantum materials, band by band.

Author(s):  
Jochen Autschbach

The electronic structure of infinite periodic systems (crystals) is treated with band structure theory, replacing molecular orbitals by crystal orbitals. The chapter starts out by introducing the electron gas and definitions of the Fermi momentum, the Fermi energy, and the density of states (DOS). A periodic linear combination of atomic orbitals (LCAO) type treatment of an infinite periodic system is facilitated by the construction of Bloch functions. The notions of energy band and band gap are discussed with band structure concepts, using the approximations made in Huckel theory (chapter 12). One, two, and three-dimensional crystal lattices and the associated reciprocal lattices are introduced. The band structures of sodium metal, boron nitride, silicon, and graphite, are discussed as examples of metals, insulators, semi-conductors, and semi-metals, respectively. The chapter concludes with a brief discussion of the projected DOS and measures to determine bonding or antibonding interactions between atoms in a crystal.


2020 ◽  
Author(s):  
Elliot A. Hershberg ◽  
Jennie L. Close ◽  
Conor K. Camplisson ◽  
Sahar Attar ◽  
Ryan Chern ◽  
...  

AbstractFluorescent in situ hybridization (FISH) allows researchers to visualize the spatial position and quantity of nucleic acids in fixed samples. Recently, considerable progress has been made in developing oligonucleotide (oligo)-based FISH methods. These methods have enabled researchers to study the three-dimensional organization of the genome at super-resolution and visualize the spatial patterns of gene expression for thousands of genes in individual cells. While considerable progress has been made in developing new molecular methods that harness complex oligo libraries for FISH, there are few existing computational tools to support the bioinformatics workflows necessary to carry out these experiments. Here, we introduce Paint Server and Homology Optimization Pipeline (PaintSHOP), an interactive platform for the reproducible design of oligo FISH experiments. PaintSHOP enables researchers to identify probes for their experimental targets efficiently, to incorporate additional necessary sequences such as primer pairs, and to easily generate standardized files documenting the design of their libraries. Our platform integrates a machine learning model that quantitatively predicts probe specificity on the genome scale into a dynamic web application that creates ready-to-order probe sets for a wide variety of applications. The goal of this freely available web resource is to democratize and standardize the process of designing complex probe sets for the oligo FISH community. PaintSHOP can be accessed at: paintshop.io


2019 ◽  
Author(s):  
Fan Xu ◽  
Donghan Ma ◽  
Kathryn P. MacPherson ◽  
Sheng Liu ◽  
Ye Bu ◽  
...  

ABSTRACTSingle-molecule localization microscopy is a powerful tool in visualizing organelle structures, interactions, and protein functions in biological research. However, whole-cell and tissue specimens challenge the achievable resolution and depth of nanoscopy methods. As imaging depth increases, photons emitted by fluorescent probes, the sole source of molecular positions, were scattered and aberrated, resulting in image artifacts and rapidly deteriorating resolution. We propose a method to allow constructing the in situ 3D response of single emitters directly from single-molecule dataset and therefore allow pin-pointing single-molecule locations with limit-achieving precision and uncompromised fidelity through whole cells and tissues. This advancement expands the routine applicability of super-resolution imaging from selected cellular targets near coverslips to intra- and extra-cellular targets deep inside tissues. We demonstrate this across a range of cellular-tissue architectures from mitochondrial networks, microtubules, and nuclear pores in 2D and 3D cultures, amyloid-β plaques in mouse brains to developing cartilage in mouse forelimbs.


Author(s):  
J. P. Revel

Movement of individual cells or of cell sheets and complex patterns of folding play a prominent role in the early developmental stages of the embryo. Our understanding of these processes is based on three- dimensional reconstructions laboriously prepared from serial sections, and from autoradiographic and other studies. Many concepts have also evolved from extrapolation of investigations of cell movement carried out in vitro. The scanning electron microscope now allows us to examine some of these events in situ. It is possible to prepare dissections of embryos and even of tissues of adult animals which reveal existing relationships between various structures more readily than used to be possible vithout an SEM.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Author(s):  
W.F. Marshall ◽  
A.F. Dernburg ◽  
B. Harmon ◽  
J.W. Sedat

Interactions between chromatin and nuclear envelope (NE) have been implicated in chromatin condensation, gene regulation, nuclear reassembly, and organization of chromosomes within the nucleus. To further investigate the physiological role played by such interactions, it will be necessary to determine which loci specifically interact with the nuclear envelope. This will not only facilitate identification of the molecular determinants of this interaction, but will also allow manipulation of the pattern of chromatin-NE interactions to probe possible functions. We have developed a microscopic approach to detect and map chromatin-NE interactions inside intact cells.Fluorescence in situ hybridization (FISH) is used to localize specific chromosomal regions within the nucleus of Drosophila embryos and anti-lamin immunofluorescence is used to detect the nuclear envelope. Widefield deconvolution microscopy is then used to obtain a three-dimensional image of the sample (Fig. 1). The nuclear surface is represented by a surface-harmonic expansion (Fig 2). A statistical test for association of the FISH spot with the surface is then performed.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2015 ◽  
Vol 11 (1) ◽  
pp. 2927-2949
Author(s):  
Lyubov E. Lokot

In the paper a theoretical study the both the quantized energies of excitonic states and their wave functions in grapheneand in materials with "Mexican hat" band structure dispersion as well as in zinc-blende GaN is presented. An integral twodimensionalSchrödinger equation of the electron-hole pairing for a particles with electron-hole symmetry of reflection isexactly solved. The solutions of Schrödinger equation in momentum space in studied materials by projection the twodimensionalspace of momentum on the three-dimensional sphere are found exactly. We analytically solve an integral twodimensionalSchrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection. Instudied materials the electron-hole pairing leads to the exciton insulator states. Quantized spectral series and lightabsorption rates of the excitonic states which distribute in valence cone are found exactly. If the electron and hole areseparated, their energy is higher than if they are paired. The particle-hole symmetry of Dirac equation of layered materialsallows perfect pairing between electron Fermi sphere and hole Fermi sphere in the valence cone and conduction cone andhence driving the Cooper instability. The solutions of Coulomb problem of electron-hole pair does not depend from a widthof band gap of graphene. It means the absolute compliance with the cyclic geometry of diagrams at justification of theequation of motion for a microscopic dipole of graphene where >1 s r . The absorption spectrums for the zinc-blendeGaN/(Al,Ga)N quantum well as well as for the zinc-blende bulk GaN are presented. Comparison with availableexperimental data shows good agreement.


Sign in / Sign up

Export Citation Format

Share Document