The life span of fault-crossing channels

Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 204-207
Author(s):  
Kelian Dascher-Cousineau ◽  
Noah J. Finnegan ◽  
Emily E. Brodsky

Successive earthquakes can drive landscape evolution. However, the mechanism and pace with which landscapes respond remain poorly understood. Offset channels in the Carrizo Plain, California, capture the fluvial response to lateral slip on the San Andreas Fault on millennial time scales. We developed and tested a model that quantifies competition between fault slip, which elongates channels, and aggradation, which causes channel infilling and, ultimately, abandonment. Validation of this model supports a transport-limited fluvial response and implies that measurements derived from present-day channel geometry are sufficient to quantify the rate of bedload transport relative to slip rate. Extension of the model identifies the threshold for which persistent change in transport capacity, obliquity in slip, or advected topography results in reorganization of the drainage network.

2021 ◽  
Vol 7 (13) ◽  
pp. eaaz5691
Author(s):  
Kimberly Blisniuk ◽  
Katherine Scharer ◽  
Warren D. Sharp ◽  
Roland Burgmann ◽  
Colin Amos ◽  
...  

The San Andreas fault has the highest calculated time-dependent probability for large-magnitude earthquakes in southern California. However, where the fault is multistranded east of the Los Angeles metropolitan area, it has been uncertain which strand has the fastest slip rate and, therefore, which has the highest probability of a destructive earthquake. Reconstruction of offset Pleistocene-Holocene landforms dated using the uranium-thorium soil carbonate and beryllium-10 surface exposure techniques indicates slip rates of 24.1 ± 3 millimeter per year for the San Andreas fault, with 21.6 ± 2 and 2.5 ± 1 millimeters per year for the Mission Creek and Banning strands, respectively. These data establish the Mission Creek strand as the primary fault bounding the Pacific and North American plates at this latitude and imply that 6 to 9 meters of elastic strain has accumulated along the fault since the most recent surface-rupturing earthquake, highlighting the potential for large earthquakes along this strand.


Geosphere ◽  
2020 ◽  
Author(s):  
Katherine A. Guns ◽  
Richard A Bennett ◽  
Joshua C. Spinler ◽  
Sally F. McGill

Assessing fault-slip rates in diffuse plate boundary systems such as the San Andreas fault in southern California is critical both to characterize seis­mic hazards and to understand how different fault strands work together to accommodate plate boundary motion. In places such as San Gorgonio Pass, the geometric complexity of numerous fault strands interacting in a small area adds an extra obstacle to understanding the rupture potential and behavior of each individual fault. To better understand partitioning of fault-slip rates in this region, we build a new set of elastic fault-block models that test 16 different model fault geometries for the area. These models build on previ­ous studies by incorporating updated campaign GPS measurements from the San Bernardino Mountains and Eastern Transverse Ranges into a newly calculated GPS velocity field that has been removed of long- and short-term postseismic displacements from 12 past large-magnitude earthquakes to estimate model fault-slip rates. Using this postseismic-reduced GPS velocity field produces a best- fitting model geometry that resolves the long-standing geologic-geodetic slip-rate discrepancy in the Eastern California shear zone when off-fault deformation is taken into account, yielding a summed slip rate of 7.2 ± 2.8 mm/yr. Our models indicate that two active strands of the San Andreas system in San Gorgonio Pass are needed to produce sufficiently low geodetic dextral slip rates to match geologic observations. Lastly, results suggest that postseismic deformation may have more of a role to play in affecting the loading of faults in southern California than previously thought.


2019 ◽  
Vol 6 (1) ◽  
pp. 156-165 ◽  
Author(s):  
Lisa Grant Ludwig ◽  
Sinan O. Akciz ◽  
J Ramon Arrowsmith ◽  
J. Barrett Salisbury

Geology ◽  
2011 ◽  
Vol 39 (3) ◽  
pp. 243-246 ◽  
Author(s):  
Nathan A. Toké ◽  
J Ramón Arrowsmith ◽  
Michael J. Rymer ◽  
Angela Landgraf ◽  
David E. Haddad ◽  
...  

Science ◽  
1992 ◽  
Vol 256 (5053) ◽  
pp. 83-86 ◽  
Author(s):  
C. H. Jones ◽  
S. G. Wesnousky

1994 ◽  
Vol 84 (2) ◽  
pp. 241-246
Author(s):  
Lisa B. Grant ◽  
Andrea Donnellan

Abstract Two monuments from an 1855 cadastral survey that span the San Andreas fault in the Carrizo Plain have been right-laterally displaced 11.0 ± 2.5 m by the 1857 Fort Tejon earthquake and associated seismicity and afterslip. This measurement confirms that at least 9.5 ± 0.5 m of slip occurred along the main fault trace, as suggested by measurements of offset channels near Wallace Creek. The slip varied by 2 to 3 m along a 2.6-km section of the main fault trace. Using radiocarbon dates of the penultimate large earthquake and measurements of slip from the 1857 earthquake, we calculate an apparent slip rate for the last complete earthquake cycle that is at least 25% lower than the late-Holocene slip rate on the main fault trace. Comparison of short-term broad-aperture strain accumulation rates with the narrow-aperture late-Holocene slip rate indicates that the fault behaves nearly elastically over a time scale of several earthquake cycles. Therefore, slip in future earthquakes should compensate the slip-rate deficit from the 1857 earthquake.


Geosphere ◽  
2021 ◽  
Author(s):  
Sally F. McGill ◽  
Lewis A. Owen ◽  
Ray J. Weldon ◽  
Katherine J. Kendrick ◽  
Reed J. Burgette

Four new latest Pleistocene slip rates from two sites along the northwestern half of the San Bernardino strand of the San Andreas fault suggest the slip rate decreases southeastward as slip transfers from the Mojave section of the San Andreas fault onto the northern San Jacinto fault zone. At Badger Canyon, offsets coupled with radiocarbon and optically stimulated luminescence (OSL) ages provide three independent slip rates (with 95% confidence intervals): (1) the apex of the oldest dated alluvial fan (ca. 30–28 ka) is right-laterally offset ~300–400 m yielding a slip rate of 13.5 +2.2/−2.5 mm/yr; (2) a terrace riser incised into the northwestern side of this alluvial fan is offset ~280–290 m and was abandoned ca. 23 ka, yielding a slip rate of 11.9 +0.9/−1.2 mm/yr; and (3) a younger alluvial fan (13–15 ka) has been offset 120–200 m from the same source canyon, yielding a slip rate of 11.8 +4.2/−3.5 mm/yr. These rates are all consistent and result in a preferred, time-averaged rate for the past ~28 k.y. of 12.8 +5.3/−4.7 mm/yr (95% confidence interval), with an 84% confidence interval of 10–16 mm/yr. At Matthews Ranch, in Pitman Canyon, ~13 km northwest of Badger Canyon, a landslide offset ~650 m with a 10Be age of ca. 47 ka yields a slip rate of 14.5 +9.9/−6.2 mm/yr (95% confidence interval). All of these slip rates for the San Bernardino strand are significantly slower than a previously published rate of 24.5 ± 3.5 mm/yr at the southern end of the Mojave section of the San Andreas fault (Weldon and Sieh, 1985), suggesting that ~12 mm/yr of slip transfers from the Mojave section of the San Andreas fault to the northern San Jacinto fault zone (and other faults) between Lone Pine Canyon and Badger Canyon, with most (if not all) of this slip transfer happening near Cajon Creek. This has been a consistent behavior of the fault for at least the past ~47 k.y.


Sign in / Sign up

Export Citation Format

Share Document