Dust Bowl 2.0? Rising Great Plains dust levels stir concerns

Science ◽  
2020 ◽  
Author(s):  
Roland Pease
Keyword(s):  
2019 ◽  
Vol 15 (6) ◽  
pp. 2053-2065 ◽  
Author(s):  
Angela-Maria Burgdorf ◽  
Stefan Brönnimann ◽  
Jörg Franke

Abstract. Proxy-based studies suggest that the southwestern USA is affected by two types of summer drought, often termed Dust Bowl-type droughts and 1950s-type droughts. The spatial drought patterns of the two types are distinct. It has been suggested that they are related to different circulation characteristics, but a lack of observation-based data has precluded further studies. In this paper, we analyze multi-annual summer droughts in North America back to 1600 in tree-ring-based drought reconstructions and in a global, monthly three-dimensional reconstruction of the atmosphere. Using cluster analysis of drought indices, we confirm the two main drought types and find a similar catalog of events as previous studies. These two main types of droughts are then analyzed with respect to 2 m temperatures (T2m), sea-level pressure (SLP), and 500 hPa geopotential height (GPH) in boreal summer. 1950s-type droughts are related to a stronger wave train over the Pacific–North American sector than Dust Bowl-type droughts, whereas the latter show the imprint of a poleward-shifted jet and establishment of a Great Plains ridge. The 500 hPa GPH patterns of the two types differ significantly not only over the contiguous United States and Canada but also over the extratropical North Atlantic and the Pacific. Dust Bowl-type droughts are associated with positive GPH anomalies, while 1950s-type droughts exhibit strong negative GPH anomalies. In comparison with 1950s-type droughts, the Dust Bowl-type droughts are characterized by higher sea-surface temperatures (SSTs) in the northern North Atlantic. Results suggest that atmospheric circulation and SST characteristics not only over the Pacific but also over the extratropical North Atlantic affect the spatial pattern of North American droughts.


2006 ◽  
Vol 37 (1) ◽  
pp. 27-48 ◽  
Author(s):  
CHRISTOPHE MASUTTI

ABSTRACT The study of climate change has deep roots in the history of North American ecology. At the time of the Wall Street crash and the Depression of the 1930s, America .s Great Plains were struck by the Dust Bowl, a phenomenon of catastrophic soil erosion that resulted from the combined effects of intensive farming practices and a particularly harsh drought. Contemporaneously, the ecologist Frederic Clements proposed a theory of plant succession that itself took the history of the Great Plains as its model, and drew on the notion of climatic cycles. This theory became established as the model for ecological expertise in the politics of conservation adopted by the Roosevelt administration. In this paper, I will show how climatology became inscribed in plant ecology not only for epistemological reasons, but also due to an ideology that promoted the ecologist as an expert in the optimization of resources, in an illustration of the tripartite relationship between ecology, politics, and climate change.


The Holocene ◽  
2011 ◽  
Vol 21 (8) ◽  
pp. 1203-1216 ◽  
Author(s):  
William O. Hobbs ◽  
Sherilyn C. Fritz ◽  
Jeffery R. Stone ◽  
Joseph J. Donovan ◽  
Eric C. Grimm ◽  
...  

Sediment records from closed-basin lakes in the Northern Great Plains (NGP) of North America have contributed significantly to our understanding of regional paleoclimatology. A high-resolution (near decadal) fossil diatom record from Kettle Lake, ND, USA that spans the last 8500 cal. yr BP is interpreted in concert with percent abundance of aragonite in the sediment as an independent proxy of groundwater flow to the lake (and thus lake water level). Kettle Lake has been relatively fresh for the majority of the Holocene, likely because of the coarse substrata and a strong connection to the underlying aquifer. Interpretation of diatom assemblages in four groups indicative of low to high groundwater flow, based on the percent of aragonite in sediments, allow interpretations of arid periods (and probable meromictic lake conditions) that could not be detected based on diatom-based salinity reconstructions alone. At the centennial–millennial scale, the diatom record suggests humid/wet periods from 8351 to 8088, 4364 to 1406 and 872 to 620 cal. yr BP, with more arid periods intervening. During the last ~ 4500 years, decadal–centennial scale periods of drought have taken place, despite the generally wetter climate. These droughts appear to have had similar impacts on the Kettle Lake hydrology as the ‘Dust Bowl’ era droughts, but were longer in duration.


2018 ◽  
Vol 31 (12) ◽  
pp. 4657-4667 ◽  
Author(s):  
Qi Hu ◽  
Jose Abraham Torres-Alavez ◽  
Matthew S. Van Den Broeke

The North American Dust Bowl drought during the 1930s had devastating environmental and societal impacts. Comprehending the causes of the drought has been an ongoing effort in order to better predict similar droughts and mitigate their impacts. Among the potential causes of the drought are sea surface temperature (SST) anomalies in the tropical Pacific Ocean and strengthened local sinking motion as a feedback to degradation of the land surface condition leading up to and during the drought. Limitations on these causes are the lack of a strong tropical SST anomaly during the drought and lack of local anomaly in moisture supply to undercut the precipitation in the U.S. Great Plains. This study uses high-resolution modeling experiments and quantifies an effect of the particular Great Plains land cover in the 1930s that weakens the southerly moisture flux to the region. This effect lowers the average precipitation, making the Great Plains more susceptible to drought. When drought occurs, the land-cover effect enhances its intensity and prolongs its duration. Results also show that this land-cover effect is comparable in magnitude to the effect of the 1930s large-scale circulation anomaly. Finally, analysis of the relationship of these two effects suggests that while lowering the precipitation must have contributed to the Dust Bowl drought via the 1930s land-cover effect, the initiation of and recovery from that drought would likely result from large-scale circulation changes, either of chaotic origin or resulting from combinations of weak SST anomalies and other forcing.


2019 ◽  
Author(s):  
Angela-Maria Burgdorf ◽  
Stefan Brönnimann ◽  
Jörg Franke

Abstract. Proxy-based studies suggest that the southwestern USA is affected by two types of drought, often termed Dust Bowl-type droughts and 1950s type droughts. The spatial drought patterns of the two types are distinct. It has been suggested that they are related to different circulation characteristics, but lack of observation-based data has precluded further studies. In this paper, we analyze multi-annual droughts in North America since 1600 in tree-ring based drought reconstructions and in a global, monthly 3-dimensional reconstruction of the atmosphere. Using cluster analysis of drought indices, we confirm the two main drought types and find a similar catalog of events as previous studies. These two main types of droughts are then analyzed with respect to sea-surface temperatures (SST), sea-level pressure, and 500 hPa geopotential height (GPH) in summer. 1950s-type droughts are related to a stronger wave-train over the Pacific-North American sector than Dust Bowl-type droughts, whereas the latter show the imprint of a poleward shifted jet and establishment of a Great Plains ridge. The 500 hPa GPH patterns of the two types differ significantly not only over the contiguous United States and Canada but also over the North Atlantic and the Pacific. Dust Bowl-type droughts are associated with positive anomalies, while 1950s-type droughts exhibit strong negative anomalies. In comparison with 1950s-type droughts, the Dust Bowl-type droughts are characterized by higher SSTs in the North Atlantic. Results suggest that atmospheric circulation and SST characteristics not only over the Pacific but also over the extratropical North Atlantic affect the spatial pattern of North American droughts.


2017 ◽  
Vol 30 (7) ◽  
pp. 2437-2461 ◽  
Author(s):  
Tim Cowan ◽  
Gabriele C. Hegerl ◽  
Ioana Colfescu ◽  
Massimo Bollasina ◽  
Ariaan Purich ◽  
...  

Record-breaking summer heat waves were experienced across the contiguous United States during the decade-long “Dust Bowl” drought in the 1930s. Using high-quality daily temperature observations, the Dust Bowl heat wave characteristics are assessed with metrics that describe variations in heat wave activity and intensity. Despite the sparser station coverage in the early record, there is robust evidence for the emergence of exceptional heat waves across the central Great Plains, the most extreme of which were preconditioned by anomalously dry springs. This is consistent with the entire twentieth-century record: summer heat waves over the Great Plains develop on average ~15–20 days earlier after anomalously dry springs, compared to summers following wet springs. Heat waves following dry springs are also significantly longer and hotter, indicative of the importance of land surface feedbacks in heat wave intensification. A distinctive anomalous continental-wide circulation pattern accompanied exceptional heat waves in the Great Plains, including those of the Dust Bowl decade. An anomalous broad surface pressure ridge straddling an upper-level blocking anticyclone over the western United States forced substantial subsidence and adiabatic warming over the Great Plains, and triggered anomalous southward warm advection over southern regions. This prolonged and amplified the heat waves over the central United States, which in turn gradually spread westward following heat wave emergence. The results imply that exceptional heat waves are preconditioned, triggered, and strengthened across the Great Plains through a combination of spring drought, upper-level continental-wide anticyclonic flow, and warm advection from the north.


Sign in / Sign up

Export Citation Format

Share Document