scholarly journals Two types of North American droughts related to different atmospheric circulation patterns

2019 ◽  
Vol 15 (6) ◽  
pp. 2053-2065 ◽  
Author(s):  
Angela-Maria Burgdorf ◽  
Stefan Brönnimann ◽  
Jörg Franke

Abstract. Proxy-based studies suggest that the southwestern USA is affected by two types of summer drought, often termed Dust Bowl-type droughts and 1950s-type droughts. The spatial drought patterns of the two types are distinct. It has been suggested that they are related to different circulation characteristics, but a lack of observation-based data has precluded further studies. In this paper, we analyze multi-annual summer droughts in North America back to 1600 in tree-ring-based drought reconstructions and in a global, monthly three-dimensional reconstruction of the atmosphere. Using cluster analysis of drought indices, we confirm the two main drought types and find a similar catalog of events as previous studies. These two main types of droughts are then analyzed with respect to 2 m temperatures (T2m), sea-level pressure (SLP), and 500 hPa geopotential height (GPH) in boreal summer. 1950s-type droughts are related to a stronger wave train over the Pacific–North American sector than Dust Bowl-type droughts, whereas the latter show the imprint of a poleward-shifted jet and establishment of a Great Plains ridge. The 500 hPa GPH patterns of the two types differ significantly not only over the contiguous United States and Canada but also over the extratropical North Atlantic and the Pacific. Dust Bowl-type droughts are associated with positive GPH anomalies, while 1950s-type droughts exhibit strong negative GPH anomalies. In comparison with 1950s-type droughts, the Dust Bowl-type droughts are characterized by higher sea-surface temperatures (SSTs) in the northern North Atlantic. Results suggest that atmospheric circulation and SST characteristics not only over the Pacific but also over the extratropical North Atlantic affect the spatial pattern of North American droughts.

2019 ◽  
Author(s):  
Angela-Maria Burgdorf ◽  
Stefan Brönnimann ◽  
Jörg Franke

Abstract. Proxy-based studies suggest that the southwestern USA is affected by two types of drought, often termed Dust Bowl-type droughts and 1950s type droughts. The spatial drought patterns of the two types are distinct. It has been suggested that they are related to different circulation characteristics, but lack of observation-based data has precluded further studies. In this paper, we analyze multi-annual droughts in North America since 1600 in tree-ring based drought reconstructions and in a global, monthly 3-dimensional reconstruction of the atmosphere. Using cluster analysis of drought indices, we confirm the two main drought types and find a similar catalog of events as previous studies. These two main types of droughts are then analyzed with respect to sea-surface temperatures (SST), sea-level pressure, and 500 hPa geopotential height (GPH) in summer. 1950s-type droughts are related to a stronger wave-train over the Pacific-North American sector than Dust Bowl-type droughts, whereas the latter show the imprint of a poleward shifted jet and establishment of a Great Plains ridge. The 500 hPa GPH patterns of the two types differ significantly not only over the contiguous United States and Canada but also over the North Atlantic and the Pacific. Dust Bowl-type droughts are associated with positive anomalies, while 1950s-type droughts exhibit strong negative anomalies. In comparison with 1950s-type droughts, the Dust Bowl-type droughts are characterized by higher SSTs in the North Atlantic. Results suggest that atmospheric circulation and SST characteristics not only over the Pacific but also over the extratropical North Atlantic affect the spatial pattern of North American droughts.


2020 ◽  
Vol 77 (4) ◽  
pp. 1387-1414
Author(s):  
Dehai Luo ◽  
Yao Ge ◽  
Wenqi Zhang ◽  
Aiguo Dai

Abstract In this paper, reanalysis data are first analyzed to reveal that the individual negative (positive)-phase Pacific–North American pattern (PNA) or PNA− (PNA+) has a lifetime of 10–20 days, is characterized by strong (weak) westerly jet stream meanders, and exhibits clear wave train structures, whereas the PNA− with rapid retrogression tends to have longer lifetime and larger amplitude than the PNA+ with slow retrogression. In contrast, the wave train structure of the North Atlantic Oscillation (NAO) is less distinct, and the positive (negative)-phase NAO shows eastward (westward) movement around a higher latitude than the PNA. Moreover, it is found that the PNA wave train occurs under a larger background meridional potential vorticity gradient (PVy) over the North Pacific than that over the North Atlantic for the NAO. A unified nonlinear multiscale interaction (UNMI) model is then developed to explain why the PNA as a nonlinear wave packet has such characteristics and its large difference from the NAO. The model results reveal that the larger background PVy for the PNA (due to its location at lower latitudes) leads to its larger energy dispersion and weaker nonlinearity than the NAO, thus explaining why the PNA (NAO) is largely a linear (nonlinear) process with a strong (weak) wave train structure, though it is regarded as a nonlinear initial-value problem. The smaller PVy for the PNA− than for the PNA+ leads to lower energy dispersion and stronger nonlinearity for PNA−, which allows it to maintain larger amplitude and have a longer lifetime than the PNA+. Thus, the difference in the background PVy is responsible for the asymmetry between the two phases of PNA and the difference between the PNA and NAO.


2021 ◽  
Author(s):  
Qin Wen ◽  
Zixuan Han ◽  
Hajun Yang ◽  
Jianbo Cheng ◽  
Zhengyu Liu ◽  
...  

Abstract It has been well known that the uplift of the Tibetan Plateau (TP) can significantly enhance the Asian monsoon. Here, by comparing the sensitivity experiments with vs without the TP, we find that TP uplift can also increase the precipitation of North American Summer Monsoon (NASM), with atmosphere teleconnection accounting for 6% and oceanic dynamical process accounting for another 6%. Physically, TP uplift generates a stationary Rossby wave train traveling from Asian continent to the North Atlantic region, resulting in an anomalous high-pressure over tropical-subtropical North Atlantic. The anomalous subtropical high enhances the low level southerly winds, forcing an anomalous upward motion over North American monsoon (NAM) region and then an increased summer precipitation there. In addition, TP uplift enhances the Atlantic meridional overturning circulation, which reduces the meridional temperature gradient and leads to a northward shift of Hadley Cell over eastern Pacific-Atlantic section. The latter shifts the convection center northward to 10°N and further increases the NASM precipitation. The enhanced NASM precipitation can also be understood by the northward shift of Intertropical Convergence Zone. Our study implies that the changes of NAM climate can be affected by not only local process but also remote forcing, including the Asian highland.


2020 ◽  
Vol 33 (3) ◽  
pp. 1177-1192 ◽  
Author(s):  
Siyu Zhao ◽  
Yi Deng ◽  
Wenhong Li

AbstractThe Pacific–North America–North Atlantic sector in general experienced a dryer and warmer climate in summer during the past 40 years. These changes are partly associated with declining midlatitude synoptic variability in boreal summer, especially over the two ocean basins. A nonmodal instability analysis of the boreal summer background flow is conducted for two periods, 1979–94 and 2000–15, to understand dynamical processes potentially responsible for the observed decline of synoptic variability. The synoptic variability associated with fast, nonmodal growth of atmospheric disturbances shows a decline over northern midlatitudes in the later period, in both a barotropic model and a two-level quasigeostrophic model. These results highlight the importance of the changing summer background flow in contributing to the observed changes in synoptic variability. Also discussed are factors likely associated with background flow changes including sea surface temperature and sea ice change.


2020 ◽  
Vol 33 (17) ◽  
pp. 7255-7274
Author(s):  
Shangfeng Chen ◽  
Renguang Wu ◽  
Wen Chen ◽  
Kai Li

AbstractThis study reveals a pronounced out-of-phase relationship between surface air temperature (SAT) anomalies over northeast Eurasia in boreal winter and the following summer during 1980–2017. A colder (warmer) winter over northeast Eurasia tends to be followed by a warmer (cooler) summer of next year. The processes for the out-of-phase relation of winter and summer SAT involve the Arctic Oscillation (AO), the air–sea interaction in the North Atlantic Ocean, and a Eurasian anomalous atmospheric circulation pattern induced by the North Atlantic sea surface temperature (SST) anomalies. Winter negative AO/North Atlantic Oscillation (NAO)-like atmospheric circulation anomalies lead to continental cooling over Eurasia via anomalous advection and a tripolar SST anomaly pattern in the North Atlantic. The North Atlantic SST anomaly pattern switches to a dipolar pattern in the following summer via air–sea interaction processes and associated surface heat flux changes. The summer North Atlantic dipolar SST anomaly pattern induces a downstream atmospheric wave train, including large-scale positive geopotential height anomalies over northeast Eurasia, which contributes to positive SAT anomalies there via enhancement of downward surface shortwave radiation and anomalous advection. Barotropic model experiments verify the role of the summer North Atlantic SST anomalies in triggering the atmospheric wave train over Eurasia. Through the above processes, a colder winter is followed by a warmer summer over northeast Eurasia. The above processes apply to the years when warmer winters are followed by cooler summers except for opposite signs of SAT, atmospheric circulation, and SST anomalies.


2020 ◽  
Author(s):  
Jerome Sauer ◽  
Johanna Baehr ◽  
Nedjeljka Žagar

<p>Sea ice alters the surface albedo and modulates the heat, moisture and momentum exchange between the ocean and the atmosphere. Various studies suggest an influence of the sea ice on the atmospheric circulation, whereby the focus is often on simultaneous connections and Arctic-wide sea ice conditions. Sea ice has a strong memory and we thus hypothesize a potential feedback on the atmosphere also at higher lags. Using ERA5 reanalysis data between 1983 and 2017, the present work investigates a potential connection of the summer atmospheric circulation over Eurasia to winter sea ice anomalies southwest of Greenland. Composites of the June-July geopotential height pattern show a wave-train structure throughout the troposphere and the resulting circulation anomalies are found to influence the two metre temperatures over northeastern Europe and northern Russia. These anomalies are significantly correlated with December-January sea ice anomalies. Persistent sea surface temperature (SST) anomalies associated with the strong ice memory indicates that the winter signal is partly stored in the Labrador Sea. The observations indicate a response in the June-July 500 hPa vertical velocity in proximity of the strongest SST anomalies that is dynamically consistent with the lower-level and upper-level divergence pattern. The result suggests that the vertical velocity potentially connects a vorticity forcing in the upper troposphere to near-surface conditions over the Labrador Sea that originate from the preceeding winter. <br>A further analysis shows a particularly pronounced wave-train signal when the December-January ice anomalies appear in phase with a strong North Atlantic Oscillation (NAO) index. Those years are characterized by extensive and persistent SST anomalies in the North Atlantic bearing similarities with the tripole pattern that is known to be associated with the NAO. The SST signal is accompanied by widespread heat flux anomalies hinting at a further influence coming from the central North Atlantic. The study provides a first analysis of two possible factors that potentially contribute to the linkage between winter sea ice and the summer atmospheric circulation.</p>


2017 ◽  
Vol 30 (9) ◽  
pp. 3139-3155 ◽  
Author(s):  
Ying Dai ◽  
Steven B. Feldstein ◽  
Benkui Tan ◽  
Sukyoung Lee

The mechanisms that drive the Pacific–North American (PNA) teleconnection pattern with and without its canonical tropical convection pattern are investigated with daily ERA-Interim and NOAA OLR data (the former pattern is referred to as the convective PNA, and the latter pattern is referred to as the nonconvective PNA). Both the convective and nonconvective positive PNA are found to be preceded by wave activity fluxes associated with a Eurasian wave train. These wave activity fluxes enter the central subtropical Pacific, a location that is favorable for barotropic wave amplification, just prior to the rapid growth of the PNA. The wave activity fluxes are stronger for the positive nonconvective PNA, suggesting that barotropic amplification plays a greater role in its development. The negative convective PNA is also preceded by a Eurasian wave train, whereas the negative nonconvective PNA grows from the North Pacific contribution to a circumglobal teleconnection pattern. Driving by high-frequency eddy vorticity fluxes is largest for the negative convective PNA, indicating that a positive feedback may be playing a more dominant role in its development. The lifetimes of convective PNA events are found to be longer than those of nonconvective PNA events, with the former (latter) persisting for about three (two) weeks. Furthermore, the frequency of the positive (negative) convective PNA is about 40% (60%) greater than that of the positive (negative) nonconvective PNA.


2017 ◽  
Vol 30 (8) ◽  
pp. 2785-2810 ◽  
Author(s):  
Yohan Ruprich-Robert ◽  
Rym Msadek ◽  
Frederic Castruccio ◽  
Stephen Yeager ◽  
Tom Delworth ◽  
...  

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.


2017 ◽  
Author(s):  
Camille Li ◽  
Clio Michel ◽  
Lise Seland Graff ◽  
Ingo Bethke ◽  
Giuseppe Zappa ◽  
...  

Abstract. This study investigates the global response of the midlatitude atmospheric circulation to 1.5 °C and 2.0 °C of warming using the HAPPI Half a degree Additional warming, Projections, Prognosis and Impacts ensemble, with a focus on the winter season. Characterizing and understanding this response is critical for accurately assessing the near-term regional impacts of climate change and the benefits of limiting warming to the 1.5 °C above pre-industrial levels, as advocated by the Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC). The HAPPI experimental design allows an assessment of uncertainty in the circulation response due to model dependence and internal variability. Internal variability is found to dominate the multi-model mean response of the jet streams, storm tracks and stationary waves across most of the midlatitudes; larger signals in these features are mostly consistent with those seen in more strongly forced warming scenarios. Signals that emerge in the 1.5 °C experiment are a weakening of storm activity over North America, an inland shift of the North American stationary ridge, an equatorward shift of the North Pacific jet exit, and an equatorward intensification of the South Pacific jet. Signals that emerge under an additional 0.5 °C of warming include a poleward shift of the North Atlantic jet exit, an eastward extension of the North Atlantic storm track, and an intensification on the flanks of the Southern Hemisphere storm track. Case studies explore the implications of these circulation responses for precipitation impacts in the Mediterranean, western Europe and the North American west coast, paying particular attention to possible outcomes at the tails of the response distributions. For example, the projected weakening of the Mediterranean storm track emerges in the 2.0 °C world, though the ensemble spread still allows for both wetting and drying responses.


2020 ◽  
Author(s):  
Federico Fabiano ◽  
Virna Meccia ◽  
Paolo Davini ◽  
Paolo Ghinassi ◽  
Susanna Corti

Abstract. Future wintertime atmospheric circulation changes in the Euro-Atlantic (EAT) and Pacific-North American (PNA) sectors are studied from a Weather Regimes perspective. The CMIP5 and CMIP6 historical simulations performance in reproducing the observed regimes is first evaluated, showing a general improvement of CMIP6 models, more evident for EAT. The circulation changes projected by CMIP5 and CMIP6 scenario simulations are analyzed in terms of the change in the frequency and persistence of the regimes. In the EAT sector, significant positive trends are found for the frequency and persistence of NAO+ for SSP245, SSP370 and SSP585 scenarios, with a concomitant decrease in the frequency of the Scandinavian Blocking and Atlantic Ridge regimes. For PNA, the Pacific Through regime shows a significant increase, while the Bering Ridge is predicted to decrease in all scenarios analyzed. The spread among the model responses is linked to different levels of warming in the Polar Stratosphere, the North Atlantic and the Arctic.


Sign in / Sign up

Export Citation Format

Share Document