Changes in the growth and biochemical composition in Scenedesmus obliquus exposed to jasmonic acid and sodium acetate

2019 ◽  
Vol 155 ◽  
pp. 57-66
Author(s):  
Hakimeh Mansouri ◽  
Fatemeh Hajizadeh
2019 ◽  
Vol 31 ◽  
Author(s):  
Frederico Pacheco Militão ◽  
Valéria de Oliveira Fernandes ◽  
Kathiani Victor Bastos ◽  
Aline Paternostro Martins ◽  
Pio Colepicolo ◽  
...  

Abstract Aim The response of mixed cultures and monocultures of Pseudopediastrum boryanum (Turpin) E. Hegewald and Scenedesmus obliquus (Turpin) Kützing was assessed in the laboratory at three different temperatures: 20, 30 and 40 °C. The change in biomass and biochemical composition of these cultures was evaluated. Methods Microalgae were placed in a batch culture over 21-days in ASM1 medium. Cell density was directly counted every two days using a Fuchs-Rosenthal hemocytometer. Chlorophyll ‘a’ and total carotenoids were extracted twice. Protein, carbohydrate, total lipid and fatty acid contents were determined at the end of the experiment. Results Cultures grown in 40 °C exhibited no growth. However, there was increased cell density (13.6 x 106 cell.mL-1) and biomass (55 g.L-1) in the S. obliquus monoculture at 30 °C. High protein concentrations (672.6 mg.g-1) were observed in monocultures P. boryanum and S. obliquus at 20 °C treatments. There were high carbohydrate concentrations (6.17 mg.g-1) in P. boryanum unialgal at 30 °C. There was no significant difference in total lipid content between S. obliquus (95.5 mg.g-1), P. boryanum (96.3 mg.g-1) and the mixed culture at 20 °C (105.3 mg.g-1). FAMEs varied significantly regarding the number of unsaturated components, which predominantly consisted of fatty acids with two or more unsaturated bonds. Conclusions The biomass of the treatments analyzed was rich in proteins and essential fatty acids (such as linolenic acid), yet low in carbohydrate content, suggesting its potential use as a food supplement. Our results indicate that mixed culture of P. boryanum and S. obliquus was inefficient in cultivating biomass or biochemical compounds as compared to the unialgal cultivations. However, algae grown together showed better stability in their biochemical composition in response to changes in temperature, an important factor for microalgae production in open ponds and in food safety measures. These results suggest the consortia among different species of microalgae should be tested to determine better methodologies for the production of biomass and metabolites with greater stability towards environmental factors.


2014 ◽  
Vol 23 (1) ◽  
pp. 1-11 ◽  
Author(s):  
İlknur Ak ◽  
Cenk Öztaşkent ◽  
Yeliz Özüdoğru ◽  
Tolga Göksan

2013 ◽  
Vol 172 (5) ◽  
pp. 2377-2389 ◽  
Author(s):  
Barbara Gris ◽  
Tomas Morosinotto ◽  
Giorgio M. Giacometti ◽  
Alberto Bertucco ◽  
Eleonora Sforza

Author(s):  
Janet H. Woodward ◽  
D. E. Akin

Silicon (Si) is distributed throughout plant tissues, but its role in forages has not been clarified. Although Si has been suggested as an antiquality factor which limits the digestibility of structural carbohydrates, other research indicates that its presence in plants does not affect digestibility. We employed x-ray microanalysis to evaluate Si as an antiquality factor at specific sites of two cultivars of bermuda grass (Cynodon dactvlon (L.) Pers.). “Coastal” and “Tifton-78” were chosen for this study because previous work in our lab has shown that, although these two grasses are similar ultrastructurally, they differ in in vitro dry matter digestibility and in percent composition of Si.Two millimeter leaf sections of Tifton-7 8 (Tift-7 8) and Coastal (CBG) were incubated for 72 hr in 2.5% (w/v) cellulase in 0.05 M sodium acetate buffer, pH 5.0. For controls, sections were incubated in the sodium acetate buffer or were not treated.


Sign in / Sign up

Export Citation Format

Share Document