scholarly journals Identification of Novel VEB β-Lactamase Enzymes and Their Impact on Avibactam Inhibition

2016 ◽  
Vol 60 (5) ◽  
pp. 3183-3186 ◽  
Author(s):  
Sushmita D. Lahiri ◽  
Richard A. Alm

ABSTRACTCeftazidime-avibactam has activity againstPseudomonas aeruginosaandEnterobacteriaceaeexpressing numerous class A and class C β-lactamases, although the ability to inhibit many minor enzyme variants has not been established. Novel VEB class A β-lactamases were identified during characterization of surveillance isolates. The cloned novel VEB β-lactamases possessed an extended-spectrum β-lactamase phenotype and were inhibited by avibactam in a concentration-dependent manner. The residues that comprised the avibactam binding pocket were either identical or functionally conserved. These data demonstrate that avibactam can inhibit VEB β-lactamases.

2011 ◽  
Vol 55 (6) ◽  
pp. 2710-2713 ◽  
Author(s):  
Guo-Bao Tian ◽  
Jennifer M. Adams-Haduch ◽  
Tatiana Bogdanovich ◽  
Hong-Ning Wang ◽  
Yohei Doi

ABSTRACTA novel extended-spectrum β-lactamase (ESBL) was identified in aPseudomonas aeruginosaclinical isolate obtained from a patient admitted to a hospital in Pennsylvania in 2008. The patient had a prolonged hospitalization in a hospital in Dubai, United Arab Emirates, before being transferred to the United States. The novel ESBL, designated PME-1 (Pseudomonas aeruginosaESBL 1), is a molecular class A, Bush-Jacoby-Medeiros group 2be enzyme and shared 50, 43, and 41% amino acid identity with the L2 β-lactamase ofStenotrophomonas maltophilia, CTX-M-9, and KPC-2, respectively. PME-1 conferred clinically relevant resistance to ceftazidime, cefotaxime, cefepime, and aztreonam inP. aeruginosaPAO1 but not to carbapenems. Purified PME-1 showed good hydrolytic activity against ceftazidime, cefotaxime, and aztreonam, while activity against carbapenems and cefepime could not be measured. PME-1 was inhibited well by β-lactamase inhibitors, including clavulanic acid, sulbactam, and tazobactam. TheblaPME-1gene was carried by an approximately 9-kb plasmid and flanked by tandem ISCR24elements.


2011 ◽  
Vol 56 (1) ◽  
pp. 588-590 ◽  
Author(s):  
Takehisa Matsumoto ◽  
Mika Nagata ◽  
Nau Ishimine ◽  
Kenji Kawasaki ◽  
Kazuyoshi Yamauchi ◽  
...  

ABSTRACTAn Ambler class A β-lactamase gene,blaCIA-1, was cloned from the reference strainChryseobacterium indologenesATCC 29897 and expressed inEscherichia coliBL21. TheblaCIA-1gene encodes a novel extended-spectrum β-lactamase (ESBL) that shared 68% and 60% identities with the CGA-1 and CME-1 β-lactamases, respectively.blaCIA-1-like genes were detected from clinical isolates. In addition to the metallo-β-lactamase IND of Ambler class B,C. indologeneshas a class A ESBL gene,blaCIA-1, located on the chromosome.


Author(s):  
Cassandra L. Chatwin ◽  
Jodie C. Hamrick ◽  
Robert E. L. Trout ◽  
Cullen L. Myers ◽  
Susan M. Cusick ◽  
...  

There is an urgent need for oral agents to combat resistant gram-negative pathogens. Here we describe the characterization of VNRX-5236, a broad-spectrum boronic acid β-lactamase inhibitor (BLI) and its orally bioavailable etzadroxil prodrug, VNRX-7145. VNRX-7145 is being developed in combination with ceftibuten, an oral cephalosporin, to combat strains of Enterobacterales expressing extended spectrum β-lactamases (ESBLs) and serine carbapenemases. VNRX-5236 is a reversible covalent inhibitor of serine β-lactamases, with inactivation efficiencies on the order of 104 M−1. sec−1, and prolonged active site residence times (t1/2, 5 to 46 min). The spectrum of inhibition includes Ambler class A ESBLs, class C cephalosporinases, and class A and D carbapenemases (KPC and OXA-48, respectively). Rescue of ceftibuten by VNRX-5236 (fixed at 4 μg/mL) in isogenic strains of E. coli expressing class A, C or D β-lactamases demonstrated an expanded spectrum of activity relative to oral comparators including investigational penems, sulopenem and tebipenem. VNRX-5236 rescued ceftibuten activity in clinical isolates of Enterobacterales expressing ESBLs (MIC90 = 0.25 μg/mL), KPCs (MIC90 = 1 μg/mL), class C cephalosporinases (MIC90 = 1 μg/mL) and OXA-48-type carbapenemases (MIC90 = 1 μg/mL). Frequency of resistance studies demonstrated a low propensity for recovery of resistant variants at 4× the MIC of the ceftibuten/VNRX-5236 combination. In vivo, whereas ceftibuten alone was ineffective (ED50, >128 mg/kg), ceftibuten/VNRX-7145 administered orally protected mice from lethal septicemia caused by K. pneumoniae producing KPC carbapenemase (ED50, 12.9 mg/kg). The data demonstrate potent, broad-spectrum rescue of ceftibuten activity by VNRX-5236 in clinical isolates of cephalosporin-resistant and carbapenem-resistant Enterobacterales.


2014 ◽  
Vol 58 (10) ◽  
pp. 5704-5713 ◽  
Author(s):  
S. D. Lahiri ◽  
M. R. Johnstone ◽  
P. L. Ross ◽  
R. E. McLaughlin ◽  
N. B. Olivier ◽  
...  

ABSTRACTAvibactam is a novel non-β-lactam β-lactamase inhibitor that inhibits a wide range of β-lactamases. These include class A, class C, and some class D enzymes, which erode the activity of β-lactam drugs in multidrug-resistant pathogens likePseudomonas aeruginosaandEnterobacteriaceaespp. Avibactam is currently in clinical development in combination with the β-lactam antibiotics ceftazidime, ceftaroline fosamil, and aztreonam. Avibactam has the potential to be the first β-lactamase inhibitor that might provide activity against class C-mediated resistance, which represents a growing concern in both hospital- and community-acquired infections. Avibactam has an unusual mechanism of action: it is a covalent inhibitor that acts via ring opening, but in contrast to other currently used β-lactamase inhibitors, this reaction is reversible. Here, we present a high-resolution structure of avibactam bound to a class C β-lactamase, AmpC, fromP. aeruginosathat provided insight into the mechanism of both acylation and recyclization in this enzyme class and highlighted the differences observed between class A and class C inhibition. Furthermore, variants resistant to avibactam that identified the residues important for inhibition were isolated. Finally, the structural information was used to predict effective inhibition by sequence analysis and functional studies of class C β-lactamases from a large and diverse set of contemporary clinical isolates (P. aeruginosaand severalEnterobacteriaceaespp.) obtained from recent infections to understand any preexisting variability in the binding pocket that might affect inhibition by avibactam.


2010 ◽  
Vol 65 (5) ◽  
pp. 866-871 ◽  
Author(s):  
Y. Glupczynski ◽  
P. Bogaerts ◽  
A. Deplano ◽  
C. Berhin ◽  
T. D. Huang ◽  
...  

2012 ◽  
Vol 56 (12) ◽  
pp. 6212-6222 ◽  
Author(s):  
Lucía Fernández ◽  
Håvard Jenssen ◽  
Manjeet Bains ◽  
Irith Wiegand ◽  
W. James Gooderham ◽  
...  

ABSTRACTCationic antimicrobial peptides pass across the outer membrane by interacting with negatively charged lipopolysaccharide (LPS), leading to outer membrane permeabilization in a process termed self-promoted uptake. Resistance can be mediated by the addition of positively charged arabinosamine through the action of thearnBCADTEFoperon. We recently described a series of two-component regulators that lead to the activation of thearnoperon after recognizing environmental signals, including low-Mg2+(PhoPQ, PmrAB) or cationic (ParRS) peptides. However, some peptides did not activate thearnoperon through ParRS. Here, we report the identification of a new two-component system, CprRS, which, upon exposure to a wide range of antimicrobial peptides, triggered the expression of the LPS modification operon. Thus, mutations in thecprRSoperon blocked the induction of thearnoperon in response to several antimicrobial peptides independently of ParRS but did not affect the response to low Mg2+. Distinct patterns ofarninduction were identified. Thus, the responses to polymyxins were abrogated by eitherparRorcprRmutations, while responses to other peptides, including indolicidin, showed differential dependency on the CprRS and ParRS systems in a concentration-dependent manner. It was further demonstrated that, following exposure to inducing antimicrobial peptides,cprRSmutants did not become adaptively resistant to polymyxins as was observed for wild-type cells. Our microarray studies demonstrated that the CprRS system controlled a quite modest regulon, indicating that it was quite specific to adaptive peptide resistance. These findings provide greater insight into the complex regulation of LPS modification inPseudomonas aeruginosa, which involves the participation of at least 4 two-component systems.


2011 ◽  
Vol 55 (5) ◽  
pp. 2434-2437 ◽  
Author(s):  
P. R. S. Lagacé-Wiens ◽  
F. Tailor ◽  
P. Simner ◽  
M. DeCorby ◽  
J. A. Karlowsky ◽  
...  

ABSTRACTThe novel non-β-lactam β-lactamase inhibitor NXL104, in combination with cefepime, ceftazidime, ceftriaxone, amdinocillin, and meropenem, was tested against 190 extended-spectrum β-lactamase (ESBL)-producingEscherichia coliandKlebsiella pneumoniaeisolates, 94 AmpC-hyperproducingE. coliisolates, and 8 AmpC/ESBL-coexpressingE. coliisolates. NXL104 restored 100% susceptibility to the partner cephalosporins for all isolates tested. Amdinocillin and meropenem MICs were modestly improved (2 to 32 times lower) by NXL104. These results suggest that NXL104 may be useful in combination with β-lactams for the treatment of infections caused by ESBL- and AmpC-producingEnterobacteriaceae.


2014 ◽  
Vol 58 (11) ◽  
pp. 6490-6495 ◽  
Author(s):  
Premavathy Levasseur ◽  
Anne-Marie Girard ◽  
Ludovic Lavallade ◽  
Christine Miossec ◽  
John Pace ◽  
...  

ABSTRACTAvibactam is a novel non-β-lactam β-lactamase inhibitor that has been shownin vitroto inhibit class A, class C, and some class D β-lactamases. It is currently in phase 3 of clinical development in combination with ceftazidime. In this study, the efficacy of ceftazidime-avibactam was evaluated in a murine septicemia model against five ceftazidime-susceptible (MICs of 0.06 to 0.25 μg/ml) and 15 ceftazidime-resistant (MICs of 64 to >128 μg/ml) species ofEnterobacteriaceae, bearing either TEM, SHV, CTX-M extended-spectrum, or AmpC β-lactamases. In the first part of the study, ceftazidime-avibactam was administered at ratios of 4:1 and 8:1 (wt/wt) to evaluate the optimal ratio for efficacy. Against ceftazidime-susceptible isolates ofKlebsiella pneumoniaeandEscherichia coli, ceftazidime and ceftazidime-avibactam demonstrated similar efficacies (50% effective doses [ED50] of <1.5 to 9 mg/kg of body weight), whereas against ceftazidime-resistant β-lactamase-producing strains (ceftazidime ED50of >90 mg/kg), the addition of avibactam restored efficacy to ceftazidime (ED50dropped to <5 to 65 mg/kg). In a subsequent study, eight isolates (two AmpC and six CTX-M producers) were studied in the septicemia model. Ceftazidime-avibactam was administered at a 4:1 (wt/wt) ratio, and the efficacy was compared to that of the 4:1 (wt/wt) ratio of either piperacillin-tazobactam or cefotaxime-avibactam. Against the eight isolates, ceftazidime-avibactam was the more effective combination, with ED50values ranging from 2 to 27 mg/kg compared to >90 mg/kg and 14 to >90 mg/kg for piperacillin-tazobactam and cefotaxime-avibactam, respectively. This study demonstrates that the potentin vitroactivity observed with the ceftazidime-avibactam combination against ceftazidime-resistantEnterobacteriaceaespecies bearing class A and class C β-lactamases translated into good efficacy in the mouse septicemia model.


2013 ◽  
Vol 57 (6) ◽  
pp. 2496-2505 ◽  
Author(s):  
Sushmita D. Lahiri ◽  
Stefano Mangani ◽  
Thomas Durand-Reville ◽  
Manuela Benvenuti ◽  
Filomena De Luca ◽  
...  

ABSTRACTAlthough β-lactams have been the most effective class of antibacterial agents used in clinical practice for the past half century, their effectiveness on Gram-negative bacteria has been eroded due to the emergence and spread of β-lactamase enzymes that are not affected by currently marketed β-lactam/β-lactamase inhibitor combinations. Avibactam is a novel, covalent, non-β-lactam β-lactamase inhibitor presently in clinical development in combination with either ceftaroline or ceftazidime.In vitrostudies show that avibactam may restore the broad-spectrum activity of cephalosporins against class A, class C, and some class D β-lactamases. Here we describe the structures of two clinically important β-lactamase enzymes bound to avibactam, the class A CTX-M-15 extended-spectrum β-lactamase and the class CPseudomonas aeruginosaAmpC β-lactamase, which together provide insight into the binding modes for the respective enzyme classes. The structures reveal similar binding modes in both enzymes and thus provide a rationale for the broad-spectrum inhibitory activity of avibactam. Identification of the key residues surrounding the binding pocket allows for a better understanding of the potency of this scaffold. Finally, avibactam has recently been shown to be a reversible inhibitor, and the structures provide insights into the mechanism of avibactam recyclization. Analysis of the ultra-high-resolution CTX-M-15 structure suggests how the deacylation mechanism favors recyclization over hydrolysis.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 745
Author(s):  
Melaine González-García ◽  
Fidel Morales-Vicente ◽  
Erbio Díaz Pico ◽  
Hilda Garay ◽  
Daniel G. Rivera ◽  
...  

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum β-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25–50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


Sign in / Sign up

Export Citation Format

Share Document