scholarly journals The Structure of the Dizinc Subclass B2 Metallo-β-Lactamase CphA Reveals that the Second Inhibitory Zinc Ion Binds in the Histidine Site

2009 ◽  
Vol 53 (10) ◽  
pp. 4464-4471 ◽  
Author(s):  
Carine Bebrone ◽  
Heinrich Delbrück ◽  
Michaël B. Kupper ◽  
Philipp Schlömer ◽  
Charlotte Willmann ◽  
...  

ABSTRACT Bacteria can defend themselves against β-lactam antibiotics through the expression of class B β-lactamases, which cleave the β-lactam amide bond and render the molecule harmless. There are three subclasses of class B β-lactamases (B1, B2, and B3), all of which require Zn2+ for activity and can bind either one or two zinc ions. Whereas the B1 and B3 metallo-β-lactamases are most active as dizinc enzymes, subclass B2 enzymes, such as Aeromonas hydrophila CphA, are inhibited by the binding of a second zinc ion. We crystallized A. hydrophila CphA in order to determine the binding site of the inhibitory zinc ion. X-ray data from zinc-saturated crystals allowed us to solve the crystal structures of the dizinc forms of the wild-type enzyme and N220G mutant. The first zinc ion binds in the cysteine site, as previously determined for the monozinc form of the enzyme. The second zinc ion occupies a slightly modified histidine site, where the conserved His118 and His196 residues act as metal ligands. This atypical coordination sphere probably explains the rather high dissociation constant for the second zinc ion compared to those observed with enzymes of subclasses B1 and B3. Inhibition by the second zinc ion results from immobilization of the catalytically important His118 and His196 residues, as well as the folding of the Gly232-Asn233 loop into a position that covers the active site.

1999 ◽  
Vol 340 (3) ◽  
pp. 711-714 ◽  
Author(s):  
Sebastien FARNAUD ◽  
Renée TATA ◽  
Maninder K. SOHI ◽  
Tommy WAN ◽  
Paul R. BROWN ◽  
...  

Wild-type and site-specific mutants C166S and C166A (Cys-166 → Ser and Cys-166 → Ala respectively) of the amidase (acylamide amidohydrolase, EC 3.5.1.4) from Pseudomonas aeruginosa were expressed in Escherichia coli by using the vector pKK223-3. Both mutant proteins were catalytically inactive but showed complete cross-reactivity with polyclonal antiserum raised against the wild-type enzyme, as well as CD spectra identical with that of the wild-type enzyme, which were indicative of correct folding. Cys-166 is therefore implicated as the active-site nucleophile. Titration of free thiol groups with 5,5ʹ-dithiobis-(2-nitrobenzoic acid) indicated that Cys-166 is not a rapidly reacting residue. Crystals of both wild-type and C166S amidase grew with identical, rhombohedral morphology; X-ray diffraction analysis established the unit cell dimensions (a = b = c = 84 Å; α = β = γ = 75 °) and space group (R3 or R32). These results imply a quaternary structure of six subunits, with most probably 32 symmetry; the existence of a hexameric structure was supported by molecular mass determinations based on gel filtration and electrophoretic mobility.


2007 ◽  
Vol 51 (6) ◽  
pp. 2136-2142 ◽  
Author(s):  
L. E. Horsfall ◽  
G. Garau ◽  
B. M. R. Liénard ◽  
O. Dideberg ◽  
C. J. Schofield ◽  
...  

ABSTRACT Various inhibitors of metallo-β-lactamases have been reported; however, none are effective for all subgroups. Those that have been found to inhibit the enzymes of subclass B2 (catalytically active with one zinc) either contain a thiol (and show less inhibition towards this subgroup than towards the dizinc members of B1 and B3) or are inactivators behaving as substrates for the dizinc family members. The present work reveals that certain pyridine carboxylates are competitive inhibitors of CphA, a subclass B2 enzyme. X-ray crystallographic analyses demonstrate that pyridine-2,4-dicarboxylic acid chelates the zinc ion in a bidentate manner within the active site. Salts of these compounds are already available and undergoing biomedical testing for various nonrelated purposes. Pyridine carboxylates appear to be useful templates for the development of more-complex, selective, nontoxic inhibitors of subclass B2 metallo-β-lactamases.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


1998 ◽  
Vol 54 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Andrea Carfi ◽  
Emile Duée ◽  
Moreno Galleni ◽  
Jean-Marie Frère ◽  
Otto Dideberg

Class B \beta-lactamases are wide spectrum enzymes which require bivalent metal ions for activity. The structure of the class B zinc-ion-dependent β-lactamase from Bacillus cereus (BCII) has been refined at 1.85 Å resolution using data collected on cryocooled crystals (100 K). The enzyme from B. cereus has a molecular mass of 24 946 Da and is folded into a \beta-sandwich structure with helices on the external faces. The active site is located in a groove running between the two \beta-sheets [Carfi et al. (1995). EMBO J. 14, 4914–4921]. The 100 K high-resolution BCII structure shows one fully and one partially occupied zinc site. The zinc ion in the fully occupied site (the catalytic zinc) is coordinated by three histidines and one water molecule. The second zinc ion is at 3.7 Å from the first one and is coordinated by one histidine, one cysteine, one aspartate and one unknown molecule (which is most likely to be a carbonate ion). In the B. cereus zinc \beta-lactamase the affinity for the second metal ion is low at the pH of crystallization (Kd = 25 mM, 293 K; [Baldwin et al. (1978). Biochem. J. 175, 441–447] and the dissociation constant of the second zinc ion thus apparently decreased at the cryogenic temperature. In addition, the structure of the apo enzyme was determined at 2.5 Å resolution. The removal of the zinc ion by chelating agents causes small changes in the active-site environment.


2003 ◽  
Vol 373 (3) ◽  
pp. 733-738 ◽  
Author(s):  
Peter T. ERSKINE ◽  
Leighton COATES ◽  
Danica BUTLER ◽  
James H. YOUELL ◽  
Amanda A. BRINDLEY ◽  
...  

The X-ray structure of yeast 5-aminolaevulinic acid dehydratase, in which the catalytic site of the enzyme is complexed with a putative cyclic intermediate composed of both substrate moieties, has been solved at 0.16 nm (1.6 Å) resolution. The cyclic intermediate is bound covalently to Lys263 with the amino group of the aminomethyl side chain ligated to the active-site zinc ion in a position normally occupied by a catalytic hydroxide ion. The cyclic intermediate is catalytically competent, as shown by its turnover in the presence of added substrate to form porphobilinogen. The findings, combined with those of previous studies, are consistent with a catalytic mechanism in which the C–C bond linking both substrates in the intermediate is formed before the C–N bond.


1999 ◽  
Vol 343 (2) ◽  
pp. 361-369 ◽  
Author(s):  
Patrick MASSON ◽  
Cécile CLÉRY ◽  
Patrice GUERRA ◽  
Arnaud REDSLOB ◽  
Christine ALBARET ◽  
...  

Wild-type human butyrylcholinesterase (BuChE) and Glu-197 → Asp and Asp-70 → Gly mutants (E197D and D70G respectively) were inhibited by di-isopropyl phosphorofluoridate under standard conditions of pH, temperature and pressure. The effect of hydrostatic and osmotic pressures on the aging process (dealkylation of an isopropyl chain) of phosphorylated enzymes [di-isopropylated (DIP)-BuChE] was investigated. Hydrostatic pressure markedly increased the rate of aging of wild-type enzyme. The average activation volume (δV≠) for the dealkylation reaction was -170 ml/mol for DIP wild-type BuChE. On the other hand, hydrostatic pressure had little effect on the aging of the DIP mutants (δV≠ = -2.6 ml/mol for E197D and -2 ml/mol for D70G), suggesting that the transition state of the aging process was associated with an extended hydration and conformational change in wild-type BuChE, but not in the mutants. The rate of aging of wild-type and mutant enzymes decreased with osmotic pressure, allowing very large positive osmotic activation volumes (δV≠osm) to be estimated, thus probing the participation of water in the aging process. Molecular dynamics simulations performed on the active-site gorge of the wild-type DIP adduct showed that the isopropyl chain involved in aging was highly solvated, supporting the idea that water is important for stabilizing the transition state of the dealkylation reaction. Wild-type BuChE was inhibited by soman (pinacolyl methylphosphonofluoridate). Electrophoresis performed under high pressure [up to 2.5 kbar (1 bar = 105 Pa)] showed that the soman-aged enzyme did not pass through a pressure-induced, molten-globule transition, unlike the native wild-type enzyme. Likewise, this transition was not seen for the native E197D and D70G mutants, indicating that these mutants are resistant to the penetration of water into their structure. The stability energetics of native and soman-aged wild-type BuChE were determined by differential scanning calorimetry. The pH-dependence of the midpoint transition temperature of endotherms indicated that the high difference in stabilization energy between aged and native BuChE (δδG = 23.7 kJ/mol at pH 8.0) is mainly due to the salt bridge between protonated His-438 and PO-, with pKHis-438 = 8.3. A molecular dynamics simulation on the MIP adduct showed that there is no water molecule around the ion pair. The ‘hydrostatic versus osmotic pressure’ approach probed the importance of water in aging, and also revealed that Asp-70 and Glu-197 are the major residues controlling both the dynamics and the structural organization of the water/hydrogen-bond network in the active-site gorge of BuChE. In wild-type BuChE both residues function like valves, whereas in the mutant enzymes the water network is slack, and residues Gly-70 and Asp-197 function like check valves, i.e. forced penetration of water into the gorge is not easily achieved, thereby facilitating the release of water.


2020 ◽  
Vol 117 (45) ◽  
pp. 27989-27996
Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Ryoji Miyazaki ◽  
Yohei Hizukuri ◽  
Hiroyuki Mori ◽  
...  

Escherichia coliperiplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer-membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD. The underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features: In particular, the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246–mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


2016 ◽  
Vol 82 (8) ◽  
pp. 2247-2255 ◽  
Author(s):  
Lei Wang ◽  
Xuguo Duan ◽  
Jing Wu

ABSTRACTCyclodextrin glycosyltransferases (CGTases) (EC 2.4.1.19) catalyze the conversion of starch or starch derivates into mixtures of α-, β-, and γ-cyclodextrins. Because time-consuming and expensive purification procedures hinder the widespread application of single-ingredient cyclodextrins, enzymes with enhanced specificity are needed. In this study, we tested the hypothesis that the α-cyclodextrin selectivity ofPaenibacillus maceransα-CGTase could be augmented by masking subsite −7 of the active site, blocking the formation of larger cyclodextrins, particularly β-cyclodextrin. Five single mutants and three double mutants designed to remove hydrogen-bonding interactions between the enzyme and substrate at subsite −7 were constructed and characterized in detail. Although the rates of α-cyclodextrin formation varied only modestly, the rate of β-cyclodextrin formation decreased dramatically in these mutants. The increase in α-cyclodextrin selectivity was directly proportional to the increase in the ratio of theirkcatvalues for α- and β-cyclodextrin formation. The R146A/D147P and R146P/D147A double mutants exhibited ratios of α-cyclodextrin to total cyclodextrin production of 75.1% and 76.1%, approximately one-fifth greater than that of the wild-type enzyme (63.2%), without loss of thermostability. Thus, these double mutants may be more suitable for the industrial production of α-cyclodextrin than the wild-type enzyme. The production of β-cyclodextrin by these mutants was almost identical to their production of γ-cyclodextrin, which was unaffected by the mutations in subsite −7, suggesting that subsite −7 was effectively blocked by these mutations. Further increases in α-cyclodextrin selectivity will require identification of the mechanism or mechanisms by which these small quantities of larger cyclodextrins are formed.


1989 ◽  
Vol 260 (2) ◽  
pp. 491-497 ◽  
Author(s):  
L Hederstedt ◽  
L O Hedén

Mammalian and Escherichia coli succinate dehydrogenase (SDH) and E. coli fumarate reductase apparently contain an essential cysteine residue at the active site, as shown by substrate-protectable inactivation with thiol-specific reagents. Bacillus subtilis SDH was found to be resistant to this type of reagent and contains an alanine residue at the amino acid position equivalent to the only invariant cysteine in the flavoprotein subunit of E. coli succinate oxidoreductases. Substitution of this alanine, at position 252 in the flavoprotein subunit of B. subtilis SDH, by cysteine resulted in an enzyme sensitive to thiol-specific reagents and protectable by substrate. Other biochemical properties of the redesigned SDH were similar to those of the wild-type enzyme. It is concluded that the invariant cysteine in the flavoprotein of E. coli succinate oxidoreductases corresponds to the active site thiol. However, this cysteine is most likely not essential for succinate oxidation and seemingly lacks an assignable specific function. An invariant arginine in juxtaposition to Ala-252 in the flavoprotein of B. subtilis SDH, and to the invariant cysteine in the E. coli homologous enzymes, is probably essential for substrate binding.


Sign in / Sign up

Export Citation Format

Share Document