scholarly journals Novel Conjugate of Moxifloxacin and Carboxymethylated Glucan with Enhanced Activity against Mycobacterium tuberculosis

2006 ◽  
Vol 50 (6) ◽  
pp. 1982-1988 ◽  
Author(s):  
Y. S. Schwartz ◽  
M. I. Dushkin ◽  
V. A. Vavilin ◽  
E. V. Melnikova ◽  
O. M. Khoschenko ◽  
...  

ABSTRACT Mycobacterium tuberculosis is an intracellular pathogen that persists within macrophages of the human host. One approach to improving the treatment of tuberculosis (TB) is the targeted delivery of antibiotics to macrophages using ligands to macrophage receptors. The moxifloxacin-conjugated dansylated carboxymethylglucan (M-DCMG) conjugate was prepared by chemically linking dansylcadaverine (D) and moxifloxacin (M) to carboxymethylglucan (CMG), a known ligand of macrophage scavenger receptors. The targeted delivery to macrophages and the antituberculosis activity of the conjugate M-DCMG were studied in vitro and in vivo. Using fluorescence microscopy, fluorimetry, and the J774 macrophage cell line, M-DCMG was shown to accumulate in macrophages through scavenger receptors in a dose-dependent (1 to 50 μg/ml) manner. After intravenous administration of M-DCMG into C57BL/6 mice, the fluorescent conjugate was concentrated in the macrophages of the lungs and spleen. Analyses of the pharmacokinetics of the conjugate demonstrated that M-DCMG was more rapidly accumulated and more persistent in tissues than free moxifloxacin. Importantly, therapeutic studies of mycobacterial growth in C57BL/6 mice showed that the M-DCMG conjugate was significantly more potent than free moxifloxacin.

2008 ◽  
Vol 191 (5) ◽  
pp. 1618-1630 ◽  
Author(s):  
Shaleen B. Korch ◽  
Heidi Contreras ◽  
Josephine E. Clark-Curtiss

ABSTRACT Mycobacterium tuberculosis protein pairs Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, here named RelBE, RelFG, and RelJK, respectively, were identified based on homology to the Escherichia coli RelBE toxin:antitoxin (TA) module. In this study, we have characterized each Rel protein pair and have established that they are functional TA modules. Overexpression of individual M. tuberculosis rel toxin genes relE, relG, and relK induced growth arrest in Mycobacterium smegmatis; a phenotype that was completely reversible by expression of their cognate antitoxin genes, relB, relF, and relJ, respectively. We also provide evidence that RelB and RelE interact directly, both in vitro and in vivo. Analysis of the genetic organization and regulation established that relBE, relFG, and relJK form bicistronic operons that are cotranscribed and autoregulated, in a manner unlike typical TA modules. RelB and RelF act as transcriptional activators, inducing expression of their respective promoters. However, RelBE, RelFG, and RelJK (together) repress expression to basal levels of activity, while RelJ represses promoter activity altogether. Finally, we have determined that all six rel genes are expressed in broth-grown M. tuberculosis, whereas relE, relF, and relK are expressed during infection of human macrophages. This is the first demonstration of M. tuberculosis expressing TA modules in broth culture and during infection of human macrophages.


Author(s):  
Catherine Vilchèze ◽  
William R. Jacobs

N-acetylcysteine (NAC) is most commonly used for the treatment of acetaminophen overdose and acetaminophen-induced liver injury. In patients infected with Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), NAC is given to treat hepatotoxicity induced by TB drugs. We had previously shown that cysteine, a derivative of NAC, potentiated the activity of isoniazid, a first-line TB drug, by preventing the emergence of INH resistance and persistence in M. tuberculosis in vitro. Herein, we demonstrate that in vitro, NAC has the same boosting activity with various combinations of first- and second-line TB drugs against drug-susceptible and multidrug-resistant M. tuberculosis strains. Similar to cysteine, NAC increased M. tuberculosis respiration. However, in M. tuberculosis-infected mice, the addition of NAC did not augment the activity of first- or second-line TB drugs. A comparison of the activity of NAC combined with TB drugs in murine and human macrophage cell lines revealed that studies in mice might not be recapitulated during host infection in vivo.


1995 ◽  
Vol 310 (2) ◽  
pp. 533-538 ◽  
Author(s):  
T Furukawa ◽  
H Kohno ◽  
R Tokunaga ◽  
S Taketani

To investigate the role of the iron-sulphur cluster in mammalian ferrochelatases, the terminal enzyme of the haem biosynthetic pathway, we examined the interaction of nitric oxide (NO) and ferrochelatase. When macrophage cell line RAW 264.7 cells were treated with interferon-gamma and lipopolysaccharide NO synthesis in the cells was stimulated, and a decrease in ferrochelatase activity was observed, with no change in the amount of ferrochelatase. The addition of NG-monomethyl-L-arginine, a selective inhibitor of NO synthesis, reduced the effect of interferon-gamma and lipopolysaccharide, while the effect of NG-monomethyl-L-arginine was suppressed by the addition of L-arginine, a substrate of NO synthase. When purified recombinant human ferrochelatase was treated with 3-morpholinosydnonimine, a NO-generating compound, ferrochelatase activity decreased with disappearance of characteristic absorbance spectra of the iron-sulphur cluster. S-Nitroso-N-acetylpenicillamine also reduced the activity, in a dose-dependent manner. These results indicate that ferrochelatase activity can be modulated by NO synthesis probably through disruption of the iron-sulphur cluster. We propose that inactivation of ferrochelatase mediated by NO (or NO-derived species) may play a role in the regulation of haem metabolism.


2003 ◽  
Vol 71 (2) ◽  
pp. 697-707 ◽  
Author(s):  
Konstantin B. Majorov ◽  
Irina V. Lyadova ◽  
Tatiana K. Kondratieva ◽  
Eugeny B. Eruslanov ◽  
Elvira I. Rubakova ◽  
...  

ABSTRACT Mice of the I/St and A/Sn inbred strains display a severe and moderate course, respectively, of disease caused by Mycobacterium tuberculosis. Earlier, we showed that the response to mycobacterial antigens in I/St mice compared to that in A/Sn mice is shifted toward Th2-like reactivity and a higher proliferative activity and turnover of T cells. However, the physiologic basis for different expressions of tuberculosis severity in these mice remains largely unknown. Here, we extend our previous observations with evidence that I/St interstitial lung macrophages are defective in the ability to inhibit mycobacterial growth and to survive following in vitro infection with M. tuberculosis H37Rv. A unique feature of this phenotype is its exclusive expression in freshly isolated lung macrophages. The defect is not displayed in ex vivo macrophages obtained from the peritoneal cavity nor in macrophages developed in vitro from progenitors extracted from various organs, including the lung itself. In addition, we show that, in sharp contrast to peritoneal macrophages, the mycobactericidal capacity of lung macrophages is not elevated in the presence of exogenous gamma interferon. Our data suggest that the in vivo differentiation in a particular anatomical microenvironment determines the pattern of macrophage-mycobacterium interaction. Thus, caution should be exercised when conclusions based upon the results obtained in a particular in vitro system are generalized to the functions of all phagocytes during M. tuberculosis infection.


1987 ◽  
Vol 166 (4) ◽  
pp. 909-922 ◽  
Author(s):  
W Sluiter ◽  
E Hulsing-Hesselink ◽  
I Elzenga-Claasen ◽  
L W van Hemsbergen-Oomens ◽  
A van der Voort van der Kleij-van Andel ◽  
...  

Earlier investigations had indicated that the factor increasing monocytopoiesis (FIM), present in the serum of mice and rabbits during the onset of an inflammatory response, is released by cells of the inflammatory exudate. The present study was performed to determine which cells produce and secrete this factor and to establish the kinetics of its production and secretion. FIM was assayed in vivo by intravenous injection of samples into untreated mice and monitoring the course of the number of blood monocytes in the recipients. FIM was assayed in vitro by adding samples to cultures of the macrophage cell line PU5 and determining the rate of proliferation of the cells. The results show that only macrophages contain and synthesize FIM. This factor is secreted upon exposure to a phagocytic stimulus, and after the release of preformed FIM, macrophages secrete newly synthesized FIM. Granulocytes and lymphocytes neither contain nor secrete FIM. The characteristics of FIM derived from macrophages are in all aspects similar to those of FIM in serum. Macrophage-derived FIM is a protein with a molecular weight between 10 and 25 X 10(3), its activity is cell-lineage specific and dose dependent, and it stimulates monocyte production in the bone marrow. Macrophage-derived FIM is not identical to either CSF-1 or IL-1, and has no chemotactic activity. Taken together, the present results show that FIM occurring in serum during an inflammatory response originates from macrophages at the site of the inflammation. In this way the macrophages themselves regulate the supply of circulating blood monocytes that can migrate to the site of injury when needed.


2019 ◽  
Author(s):  
Neharika Jain ◽  
Haroon Kalam ◽  
Lakshyaveer Singh ◽  
Vartika Sharma ◽  
Saurabh Kedia ◽  
...  

SummaryAnti-tuberculosis (TB) drugs while being highly potent in vitro require prolonged treatment to control Mycobacterium tuberculosis (Mtb) infections in vivo. We report here, mesenchymal stem cells (MSCs) shelter Mtb to help tolerate anti-TB drugs. MSCs uptake Mtb readily and allow them grow unabated despite having functional innate pathway of phagosome maturation. Unlike macrophage-resident ones, MSC-resident Mtb tolerates anti-TB drugs remarkably well, a phenomenon requiring proteins ABCC1, ABCG2 and vacuolar-type H+ATPases. Additionally, contrary to what is classically known, IFNγ and TNFα aid mycobacterial growth within MSCs. Mechanistically, evading drugs and inflammatory cytokines by MSC-resident Mtb is dependent on elevated PGE2 signaling, which we subsequently verified in vivo analyzing sorted CD45-CD73+SCA1+-MSCs from the lungs of infected mice. Moreover granulomas from human pulmonary and extra-pulmonary TB show presence of MSCs co-inhabiting with Mtb. Together the results show targeting the immune-privileged niche, provided by MSCs to Mtb, can revolutionize tuberculosis prevention and cure.


2011 ◽  
Vol 68 (7) ◽  
pp. 381-387
Author(s):  
Otto Schoch

Das primäre Ziel der Aktivitäten zur bevölkerungsbezogenen Tuberkulosekontrolle ist die Identifizierung von Patienten mit sputummikroskopisch positiver Lungentuberkulose. Wenn diese Patienten umgehend therapiert werden, haben sie nicht nur eine optimale Heilungschance, sondern übertragen auch den Krankheitserreger nicht weiter auf andere Personen. Das Screening, die systematische Suche nach Tuberkulose, erfolgt in der Regel radiologisch bei der Suche nach Erkrankten, während immunologische Teste bei der Suche nach einer Infektion mit Mycobacterium tuberculosis zur Anwendung kommen. Diese Infektion, die ein erhöhtes Risiko für die Entwicklung einer Tuberkulose-Erkrankung mit sich bringt, wird im Rahmen der Umgebungsuntersuchungen oder bei Hochrisikogruppen gesucht. Neben dem traditionellen in vivo Mantoux Hauttest stehen heute die neueren in vitro Blutteste, die sogenannten Interferon Gamma Release Assays (IGRA) zur Verfügung, die unter anderem den Vorteil einer höheren Spezifität mit sich bringen, weil die verwendeten Antigene der Mykobakterien-Wand beim Impfstamm Bacille Calmitte Guerin (BCG) und bei den meisten atypischen Mykobakterien nicht vorhanden sind. Zudem kann bei Immunsupprimierten dank einer mitgeführten Positivkontrolle eine Aussage über die Wahrscheinlichkeit eines falsch negativen Testresultates gemacht werden. Bei neu diagnostizierter Infektion mit Mycobacterium tuberculosis wird eine präventive Chemotherapie mit Isoniazid während 9 Monaten durchgeführt.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


Sign in / Sign up

Export Citation Format

Share Document