scholarly journals In Vitro Evaluation of the Activities of Telavancin, Cefazolin, and Vancomycin against Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus in Peritoneal Dialysate

2007 ◽  
Vol 51 (12) ◽  
pp. 4521-4524 ◽  
Author(s):  
Frances L. Clouse ◽  
Laurie B. Hovde ◽  
John C. Rotschafer

ABSTRACT This study compared the ability of telavancin to the ability of cefazolin and vancomycin to eliminate staphylococci from peritoneal dialysis fluid by using a static in vitro model to simulate the conditions of peritoneal dialysis. The results showed that telavancin exhibited statistically significantly better kill (P < 0.05) against both methicillin-susceptible and methicillin-resistant Staphylococcus aureus.

2010 ◽  
Vol 54 (12) ◽  
pp. 5187-5192 ◽  
Author(s):  
Molly E. Steed ◽  
Celine Vidaillac ◽  
Michael J. Rybak

ABSTRACT Reduced susceptibility to daptomycin has been reported in patients with infections due to methicillin-resistant Staphylococcus aureus (MRSA). Although infections with daptomycin-nonsusceptible (DNS) MRSA are infrequent, optimal therapy of these strains has not been determined. We investigated the killing effects of novel antibiotic combinations with daptomycin (DAP) against two clinical DNS MRSA isolates (SA-684 and R6003) in a 72-h in vitro pharmacokinetic/pharmacodynamic (PK/PD) model with simulated endocardial vegetations (SEV). Simulated regimens included DAP at 6 mg/kg every 24 h (q24h) alone or in combination with trimethoprim-sulfamethoxazole (TMP/SMX) at 160/800 mg q12h, linezolid (LIN) at 600 mg q12h, cefepime (CEF) at 2 g q12h, and nafcillin (NAF) at 4 g q4h. Bactericidal activity was defined as a ≥3-log10 CFU/g kill. Differences in CFU/g were evaluated between 4 and 72 h by analysis of variance with the Bonferroni post hoc test. DAP MICs were 4 and 2 mg/liter for SA-684 and R6003, respectively. In the PK/PD model, DAP alone was slowly bactericidal, achieving a 3-log10 kill at 24 and 50 h for SA-684 and R6003, respectively. Against SA-684, DAP plus TMP/SMX, CEF, LIN, or NAF was bactericidal at 4, 4, 8, and 8 h, respectively, and maintained this activity for the 72-h study duration. DAP plus TMP/SMX or CEF exhibited superior killing than DAP alone against SA-684 between 4 and 72 h, and overall this was significant (P < 0.05). Against R6003, DAP plus TMP/SMX was bactericidal (8 h) and superior to DAP alone between 8 and 72 h (P < 0.001). The unique combination of DAP plus TMP/SMX was the most effective and rapidly bactericidal regimen against the two isolates tested and may provide a clinical option to treat DNS S. aureus infections.


1983 ◽  
Vol 3 (3) ◽  
pp. 128-129 ◽  
Author(s):  
Carol Loeppky ◽  
Eugene Tarka ◽  
E. Dale Everett

Often dialysis -associated peritonitis is treated before the results of cultures are known with a cephalosporin and an aminoglycoside in combination. Because there may be antagonism between the individual drugs in such combinations, we have investigated this possibility through the use of timed, killing curves in dialysate effluent. We tested various cephalosporins and aminoglycosides alone and in combination at concentrations usually instilled into the peritoneum and determined their activity against one strain each of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The results of these in-vitro studies show no evidence of antagonism but rather suggest an additive effect as evidenced by more rapid killing.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1731
Author(s):  
Yu Maw Htwe ◽  
Huashan Wang ◽  
Patrick Belvitch ◽  
Lucille Meliton ◽  
Mounica Bandela ◽  
...  

Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.


Sign in / Sign up

Export Citation Format

Share Document