scholarly journals In VitroActivities of Novel Antimicrobial Combinations against Extensively Drug-Resistant Acinetobacter baumannii

2015 ◽  
Vol 59 (12) ◽  
pp. 7316-7319 ◽  
Author(s):  
J. Córdoba ◽  
N. M. Coronado-Álvarez ◽  
D. Parra ◽  
J. Parra-Ruiz

ABSTRACTExtensively drug-resistant (XDR)Acinetobacterspp. have emerged as a cause of nosocomial infections, especially under conditions of intensive care. Unfortunately, resistance to colistin is increasing and there is a need for new therapeutic options. We aimed to study the effect of some novel combinations against XDRAcinetobacter baumanniiin anin vitropharmacokinetics-pharmacodynamics (PK/PD) model. Three nonrelated clinical strains of XDRA. baumanniiwere investigated. Antibiotic-simulated regimens were colistin at 3 MU every 8 h (q8h) (first dose, 6 MU), daptomycin at 10 mg/kg of body weight q24h, imipenem at 1 g q8h, and ertapenem at 1 g q24h. Combination regimens included colistin plus daptomycin, colistin plus imipenem, and imipenem plus ertapenem. Samples were obtained at 0, 1, 2, 4, 8, and 24 h. Among the single-agent regimens, only the colistin regimen resulted in significant reductions in log10CFU per milliliter compared to the control for all the strains tested. Although colistin achieved bactericidal activity at 4 h, it was not able to reach the limit of detection (1 log10CFU/ml). One strain had significant regrowth at 24 h without the emergence of resistance. Daptomycin-colistin combinations led to a significant reduction in levels of log10CFU per milliliter that were better than those achieved with colistin as a single-agent regimen, reaching the limit of detection at 24 h against all the strains. The combination of imipenem plus ertapenem outperformed the colistin regimen, although the results did not reach the limit of detection, with significant regrowth at 24 h. Similarly, colistin-plus-imipenem combinations reduced the levels of log10CFU per milliliter at 8 h, with significant regrowth at 24 h but with development of resistance to colistin. We have shown some potentially useful alternatives for the treatment of extensively drug-resistantA. baumannii. Among them, the daptomycin-colistin combination was the most effective and should be investigated in future studies.

2016 ◽  
Vol 60 (11) ◽  
pp. 6892-6895 ◽  
Author(s):  
Derek N. Bremmer ◽  
Karri A. Bauer ◽  
Stephanie M. Pouch ◽  
Keelie Thomas ◽  
Debra Smith ◽  
...  

ABSTRACTWe tested 76 extensively drug-resistant (XDR)Acinetobacter baumanniiisolates by the checkerboard method using only wells containing serum-achievable concentrations (SACs) of drugs. Checkerboard results were correlated by time-kill assay and clinical outcomes. Minocycline-colistin was the best combinationin vitro, as it inhibited growth in one or more SAC wells in all isolates. Patients who received a combination that inhibited growth in one or more SAC wells demonstrated better microbiological clearance than those who did not (88% versus 30%;P= 0.025). The checkerboard platform may have clinical utility for XDRA. baumanniiinfections.


2016 ◽  
Vol 60 (9) ◽  
pp. 5238-5246 ◽  
Author(s):  
Yiying Cai ◽  
Tze-Peng Lim ◽  
Jocelyn Teo ◽  
Suranthran Sasikala ◽  
Winnie Lee ◽  
...  

ABSTRACTAgainst extensively drug-resistant (XDR)Enterobacter cloacae, combination antibiotic therapy may be the only option. We investigated the activity of various antibiotics in combination with polymyxin B using time-kill studies (TKS). TKS were conducted with four nonclonal XDRE. cloacaeisolates with 5 log10CFU/ml bacteria against maximum, clinically achievable concentrations of polymyxin B alone and in two-drug combinations with 10 different antibiotics. A hollow-fiber infection model (HFIM) simulating clinically relevant polymyxin B and tigecycline dosing regimens was conducted for two isolates over 240 h. Emergence of resistance was quantified using antibiotic-containing (3× MIC) media. Biofitness and stability of resistant phenotypes were determined. All XDRE. cloacaeisolates were resistant to all antibiotics except for polymyxin B (polymyxin B MIC, 1 to 4 mg/liter). All isolates harbored metallo-β-lactamases (two with NDM-1, two with IMP-1). In single TKS, all antibiotics alone demonstrated regrowth at 24 h, except amikacin against two strains and polymyxin B and meropenem against one strain each. In combination TKS, only polymyxin B plus tigecycline was bactericidal against all four XDRE. cloacaeisolates at 24 h. In HFIM, tigecycline and polymyxin B alone did not exhibit any killing activity. Bactericidal kill was observed at 24 h for both isolates for polymyxin B plus tigecycline; killing was sustained for one isolate but regrowth was observed for the second. Phenotypically stable resistant mutants with reducedin vitrogrowth rates were observed. Polymyxin B plus tigecycline is a promising combination against XDRE. cloacae. However, prolonged and indiscriminate use can result in resistance emergence.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Daniel V. Zurawski ◽  
Alexandria A. Reinhart ◽  
Yonas A. Alamneh ◽  
Michael J. Pucci ◽  
Yuanzheng Si ◽  
...  

ABSTRACT Acinetobacter baumannii is responsible for 10% of all nosocomial infections and has >50% mortality rates when causing ventilator-associated pneumonia. In this proof-of-concept study, we evaluated SPR741, an antibiotic adjuvant that permeabilizes the Gram-negative membrane, in combination with rifampin against AB5075, an extensively drug-resistant (XDR) A. baumannii strain. In standard in vitro assays and in a murine pulmonary model, we found that this drug combination can significantly reduce bacterial burden and promote animal survival despite an aggressive infection.


2015 ◽  
Vol 59 (12) ◽  
pp. 7915-7918 ◽  
Author(s):  
João Pires ◽  
Thissa N. Siriwardena ◽  
Michaela Stach ◽  
Regula Tinguely ◽  
Sara Kasraian ◽  
...  

ABSTRACTThein vitroactivity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32Acinetobacter baumannii(including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35Pseudomonas aeruginosa(including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistantA. baumanniiandP. aeruginosaisolates.


2020 ◽  
Vol 9 (40) ◽  
Author(s):  
Peechanika Chopjitt ◽  
Thidathip Wongsurawat ◽  
Piroon Jenjaroenpun ◽  
Parichart Boueroy ◽  
Rujirat Hatrongjit ◽  
...  

ABSTRACT Here, we report the complete genome sequences of four clinical isolates of extensively drug-resistant Acinetobacter baumannii (XDRAB), isolated in Thailand. These results revealed multiple antimicrobial-resistant genes, each involving two sequence type 16 (ST16) isolates, ST2, and a novel sequence type isolate, ST1479.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Zhaojing Zong ◽  
Wei Jing ◽  
Jin Shi ◽  
Shu'an Wen ◽  
Tingting Zhang ◽  
...  

ABSTRACT Oxazolidinones are efficacious in treating mycobacterial infections, including tuberculosis (TB) caused by drug-resistant Mycobacterium tuberculosis. In this study, we compared the in vitro activities and MIC distributions of delpazolid, a novel oxazolidinone, and linezolid against multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) in China. Additionally, genetic mutations in 23S rRNA, rplC, and rplD genes were analyzed to reveal potential mechanisms underlying the observed oxazolidinone resistance. A total of 240 M. tuberculosis isolates were included in this study, including 120 MDR-TB isolates and 120 XDR-TB isolates. Overall, linezolid and delpazolid MIC90 values for M. tuberculosis isolates were 0.25 mg/liter and 0.5 mg/liter, respectively. Based on visual inspection, we tentatively set epidemiological cutoff (ECOFF) values for MIC determinations for linezolid and delpazolid at 1.0 mg/liter and 2.0 mg/liter, respectively. Although no significant difference in resistance rates was observed between linezolid and delpazolid among XDR-TB isolates (P > 0.05), statistical analysis revealed a significantly greater proportion of linezolid-resistant isolates than delpazolid-resistant isolates within the MDR-TB group (P = 0.036). Seven (53.85%) of 13 linezolid-resistant isolates were found to harbor mutations within the three target genes. Additionally, 1 isolate exhibited an amino acid substitution (Arg126His) within the protein encoded by rplD that contributed to high-level resistance to linezolid (MIC of >16 mg/liter), compared to a delpazolid MIC of 0.25. In conclusion, in vitro susceptibility testing revealed that delpazolid antibacterial activity was comparable to that of linezolid. A novel mutation within rplD that endowed M. tuberculosis with linezolid, but not delpazolid, resistance was identified.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Helio S. Sader ◽  
Mariana Castanheira ◽  
Dee Shortridge ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT The in vitro activity of ceftazidime-avibactam and many comparator agents was determined against various resistant subsets of organisms selected among 36,380 Enterobacteriaceae and 7,868 Pseudomonas aeruginosa isolates. The isolates were consecutively collected from 94 U.S. hospitals, and all isolates were tested for susceptibility by reference broth microdilution methods in a central monitoring laboratory (JMI Laboratories). Enterobacteriaceae isolates resistant to carbapenems (CRE) and/or ceftazidime-avibactam (MIC ≥ 16 μg/ml) were evaluated for the presence of genes encoding extended-spectrum β-lactamases and carbapenemases. Ceftazidime-avibactam inhibited >99.9% of all Enterobacteriaceae at the susceptible breakpoint of ≤8 μg/ml and was active against multidrug-resistant (MDR; n = 2,953; MIC50/90, 0.25/1 μg/ml; 99.2% susceptible), extensively drug-resistant (XDR; n = 448; MIC50/90, 0.5/2 μg/ml; 97.8% susceptible), and CRE (n = 513; MIC50/90, 0.5/2 μg/ml; 97.5% susceptible) isolates. Only 82.2% of MDR Enterobacteriaceae (n = 2,953) and 64.2% of ceftriaxone-nonsusceptible Klebsiella pneumoniae (n = 1,063) isolates were meropenem susceptible. Among Enterobacter cloacae (22.2% ceftazidime nonsusceptible), 99.8% of the isolates, including 99.3% of the ceftazidime-nonsusceptible isolates, were ceftazidime-avibactam susceptible. Only 23 of 36,380 Enterobacteriaceae (0.06%) isolates were ceftazidime-avibactam nonsusceptible, including 9 metallo-β-lactamase producers and 2 KPC-producing strains with porin alteration; the remaining 12 strains showed negative results for all β-lactamases tested. Ceftazidime-avibactam showed potent activity against P. aeruginosa (MIC50/90, 2/4 μg/ml; 97.1% susceptible), including MDR (MIC50/90, 4/16 μg/ml; 86.5% susceptible) isolates, and inhibited 71.8% of isolates nonsusceptible to meropenem, piperacillin-tazobactam, and ceftazidime (n = 628). In summary, ceftazidime-avibactam demonstrated potent activity against a large collection (n = 44,248) of contemporary Gram-negative bacilli isolated from U.S. patients, including organisms resistant to most currently available agents, such as CRE and meropenem-nonsusceptible P. aeruginosa.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Manoj Jangra ◽  
Manpreet Kaur ◽  
Rushikesh Tambat ◽  
Rohit Rana ◽  
Sushil K. Maurya ◽  
...  

ABSTRACTThe World Health Organization has categorized the Gram-negative superbugs, which are inherently impervious to many antibiotics, as critical priority pathogens due to the lack of effective treatments. The breach in our last-resort antibiotic (i.e., colistin) by extensively drug-resistant and pan-drug-resistantEnterobacteriaceaestrains demands the immediate development of new therapies. In the present study, we report the discovery of tridecaptin M, a new addition to the family, and its potential against colistin-resistantEnterobacteriaceae in vitroandin vivo. Also, we performed mode-of-action studies using various fluorescent probes and studied the hemolytic activity and mammalian cytotoxicity in two cell lines. Tridecaptin M displayed strong antibacterial activity (MICs of 2 to 8 μg ml−1) against clinical strains ofKlebsiella pneumoniae(which were resistant to colistin, carbapenems, third- and fourth-generation cephalosporins, fluoroquinolones, fosfomycin, and other antibiotics) andmcr-1-positiveEscherichia colistrains. Unlike polymyxins, tridecaptin M did not permeabilize the outer membrane or cytoplasmic membrane. It blocked ATP synthesis in bacteria by dissipating the proton motive force. The compound exhibited negligible acquired resistance, lowin vitrocytotoxicity and hemolytic activity, and no significant acute toxicity in mice. It also showed promising efficacy in a thigh infection model of colistin-resistantK. pneumoniae. Altogether, these results demonstrate the future prospects of this class of antibiotics to address the unmet medical need to circumvent colistin resistance in extensively drug-resistantEnterobacteriaceaeinfections. The work also emphasizes the importance of natural products in our shrunken drug discovery pipeline.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


Sign in / Sign up

Export Citation Format

Share Document