scholarly journals Discovery and Characterization of Substituted Diphenyl Heterocyclic Compounds as Potent and Selective Inhibitors of Hepatitis C Virus Replication

2008 ◽  
Vol 52 (4) ◽  
pp. 1419-1429 ◽  
Author(s):  
Peiyong Huang ◽  
Dane A. Goff ◽  
Qi Huang ◽  
Anthony Martinez ◽  
Xiang Xu ◽  
...  

ABSTRACT A novel small-molecule inhibitor, referred to here as R706, was discovered in a high-throughput screen of chemical libraries against Huh-7-derived replicon cells carrying autonomously replicating subgenomic RNA of hepatitis C virus (HCV). R706 was highly potent in blocking HCV RNA replication as measured by real-time reverse transcription-PCR and Western blotting of R706-treated replicon cells. Structure-activity iterations of the R706 series yielded a lead compound, R803, that was more potent and highly specific for HCV replication, with no significant inhibitory activity against a panel of HCV-related positive-stranded RNA viruses. Furthermore, HCV genotype 1 replicons displayed markedly higher sensitivity to R803 treatment than a genotype 2a-derived replicon. In addition, R803 was tested by a panel of biochemical and cell-based assays for on-target and off-target activities, and the data suggested that the compound had a therapeutic window close to 100-fold, while its exact mechanism of action remained elusive. We found that R803 was more effective than alpha interferon (IFN-α) at blocking HCV RNA replication in the replicon model. In combination studies, R803 showed a weak synergistic effect with IFN-α/ribavirin but only additive effects with a protease inhibitor and an allosteric inhibitor of RNA-dependent RNA polymerase (20). We conclude that R803 and related heterocyclic compounds constitute a new class of HCV-specific inhibitors that could potentially be developed as a treatment for HCV infection.

2005 ◽  
Vol 79 (5) ◽  
pp. 2689-2699 ◽  
Author(s):  
Rhea Sumpter ◽  
Yueh-Ming Loo ◽  
Eileen Foy ◽  
Kui Li ◽  
Mitsutoshi Yoneyama ◽  
...  

ABSTRACT Virus-responsive signaling pathways that induce alpha/beta interferon production and engage intracellular immune defenses influence the outcome of many viral infections. The processes that trigger these defenses and their effect upon host permissiveness for specific viral pathogens are not well understood. We show that structured hepatitis C virus (HCV) genomic RNA activates interferon regulatory factor 3 (IRF3), thereby inducing interferon in cultured cells. This response is absent in cells selected for permissiveness for HCV RNA replication. Studies including genetic complementation revealed that permissiveness is due to mutational inactivation of RIG-I, an interferon-inducible cellular DExD/H box RNA helicase. Its helicase domain binds HCV RNA and transduces the activation signal for IRF3 by its caspase recruiting domain homolog. RIG-I is thus a pathogen receptor that regulates cellular permissiveness to HCV replication and, as an interferon-responsive gene, may play a key role in interferon-based therapies for the treatment of HCV infection.


2004 ◽  
Vol 78 (20) ◽  
pp. 11393-11400 ◽  
Author(s):  
Menashe Elazar ◽  
Ping Liu ◽  
Charles M. Rice ◽  
Jeffrey S. Glenn

ABSTRACT Like other positive-strand RNA viruses, hepatitis C virus (HCV) is believed to replicate its RNA in association with host cell cytoplasmic membranes. Because of its association with such membranes, NS4B, one of the virus's nonstructural proteins, may play an important role in this process, although the mechanistic details are not well understood. We identified a putative N-terminal amphipathic helix (AH) in NS4B that mediates membrane association. Introduction of site-directed mutations designed to disrupt the hydrophobic face of the AH abolishes the AH's ability to mediate membrane association. An AH in NS4B is conserved across HCV isolates. Completely disrupting the amphipathic nature of NS4B's N-terminal helix abolished HCV RNA replication, whereas partial disruption resulted in an intermediate level of replication. Finally, immunofluorescence studies revealed that HCV replication complex components were mislocalized in the AH-disrupted mutant. These results identify a key membrane-targeting domain which can form the basis for developing novel antiviral strategies.


2006 ◽  
Vol 50 (10) ◽  
pp. 3260-3268 ◽  
Author(s):  
Qing Zhu ◽  
Yoko Oei ◽  
Dirk B. Mendel ◽  
Evelyn N. Garrett ◽  
Montesa B. Patawaran ◽  
...  

ABSTRACT The lack of a robust small-animal model for hepatitis C virus (HCV) has hindered the discovery and development of novel drug treatments for HCV infections. We developed a reproducible and easily accessible xenograft mouse efficacy model in which HCV RNA replication is accurately monitored in vivo by real-time, noninvasive whole-body imaging of gamma-irradiated SCID mice implanted with a mouse-adapted luciferase replicon-containing Huh-7 cell line (T7-11). The model was validated by demonstrating that both a small-molecule NS3/4A protease inhibitor (BILN 2061) and human alpha interferon (IFN-α) decreased HCV RNA replication and that treatment withdrawal resulted in a rebound in replication, which paralleled clinical outcomes in humans. We further showed that protease inhibitor and IFN-α combination therapy was more effective in reducing HCV RNA replication than treatment with each compound alone and supports testing in humans. This robust mouse efficacy model provides a powerful tool for rapid evaluation of potential anti-HCV compounds in vivo as part of aggressive drug discovery efforts.


2007 ◽  
Vol 82 (5) ◽  
pp. 2182-2195 ◽  
Author(s):  
Paul Targett-Adams ◽  
Steeve Boulant ◽  
John McLauchlan

ABSTRACT The mechanisms involved in hepatitis C virus (HCV) RNA replication are unknown, and this aspect of the virus life cycle is not understood. It is thought that virus-encoded nonstructural proteins and RNA genomes interact on rearranged endoplasmic reticulum (ER) membranes to form replication complexes, which are believed to be sites of RNA synthesis. We report that, through the use of an antibody specific for double-stranded RNA (dsRNA), dsRNA is readily detectable in Huh-7 cells that contain replicating HCV JFH-1 genomes but is absent in control cells. Therefore, as that of other RNA virus genomes, the replication of the HCV genome may involve the generation of a dsRNA replicative intermediate. In Huh-7 cells supporting HCV RNA replication, dsRNA was observed as discrete foci, associated with virus-encoded NS5A and core proteins and identical in morphology and distribution to structures containing HCV RNA visualized by fluorescence-based hybridization methods. Three-dimensional reconstruction of deconvolved z-stack images of virus-infected cells provided detailed insight into the relationship among dsRNA foci, NS5A, the ER, and lipid droplets (LDs). This analysis revealed that dsRNA foci were located on the surface of the ER and often surrounded, partially or wholly, by a network of ER-bound NS5A protein. Additionally, virus-induced dsRNA foci were juxtaposed to LDs, attached to the ER. Thus, we report the visualization of HCV-induced dsRNA foci, the likely sites of virus RNA replication, and propose that HCV genome synthesis occurs at LD-associated sites attached to the ER in virus-infected cells.


2012 ◽  
Vol 93 (7) ◽  
pp. 1422-1431 ◽  
Author(s):  
Midori Takeda ◽  
Masanori Ikeda ◽  
Yasuo Ariumi ◽  
Takaji Wakita ◽  
Nobuyuki Kato

A hepatitis C virus (HCV) infection system was developed previously using the HCV JFH-1 strain (genotype 2a) and HuH-7 cells, and this cell culture is so far the only robust production system for HCV. In patients with chronic hepatitis C, the virological effects of pegylated interferon and ribavirin therapy differ depending on the HCV strain and the genetic background of the host. Recently, we reported the hepatoma-derived Li23 cell line, in which the JFH-1 life cycle is reproduced at a level almost equal to that in HuH-7-derived RSc cells. To monitor the HCV life cycle more easily, we here developed JFH-1 reporter-assay systems using both HuH-7- and Li23-derived cell lines. To identify any genetic mutations by long-term cell culture, HCV RNAs in HuH-7 cells were amplified 130 days after infection and subjected to sequence analysis to find adaptive mutation(s) for robust virus replication. We identified two mutations, H2505Q and V2995L, in the NS5B region. V2995L but not H2505Q enhanced JFH-1 RNA replication. However, we found that H2505Q but not V2995L enhanced HCV RNA replication of strain O (genotype 1b). We also selected highly permissive D7 cells by serial subcloning of Li23 cells. The expression levels of claudin-1 and Niemann–Pick C1-like 1 in D7 cells are higher than those in parental Li23 cells. In this study, we developed HCV JFH-1 reporter-assay systems using two distinct hepatoma cell lines, HuH-7 and Li23. The mutations in NS5B resulted in different effects on strains O and JFH-1 HCV RNA replication.


2006 ◽  
Vol 80 (12) ◽  
pp. 6013-6023 ◽  
Author(s):  
Guann-Yi Yu ◽  
Ki-Jeong Lee ◽  
Lu Gao ◽  
Michael M. C. Lai

ABSTRACT Hepatitis C Virus (HCV) NS4B protein induces a specialized membrane structure which may serve as the replication platform for HCV RNA replication. In the present study, we demonstrated that NS4B has lipid modifications (palmitoylation) on two cysteine residues (cysteines 257 and 261) at the C-terminal end. Site-specific mutagenesis of these cysteine residues on individual NS4B proteins and on an HCV subgenomic replicon showed that the lipid modifications, particularly of Cys261, are important for protein-protein interaction in the formation of the HCV RNA replication complex. We further demonstrated that NS4B can undergo polymerization. The main polymerization determinants were mapped in the N-terminal cytosolic domain of NS4B protein; however, the lipid modifications on the C terminus also facilitate the polymerization process. The lipid modification and the polymerization activity could be two properties of NS4B important for its induction of the specialized membrane structure involved in viral RNA replication.


2005 ◽  
Vol 79 (2) ◽  
pp. 896-909 ◽  
Author(s):  
Nicole Appel ◽  
Ulrike Herian ◽  
Ralf Bartenschlager

ABSTRACT Studies of Hepatitis C virus (HCV) RNA replication have become possible with the development of subgenomic replicons. This system allows the functional analysis of the essential components of the viral replication complex, which so far are poorly defined. In the present study we wanted to investigate whether lethal mutations in HCV nonstructural genes can be rescued by trans-complementation. Therefore, a series of replicon RNAs carrying mutations in NS3, NS4B, NS5A, and NS5B that abolish replication were transfected into Huh-7 hepatoma cells harboring autonomously replicating helper RNAs. Similar to data described for the Bovine viral diarrhea virus (C. W. Grassmann, O. Isken, N. Tautz, and S. E. Behrens, J. Virol. 75:7791-7802, 2001), we found that only NS5A mutants could be efficiently rescued. There was no evidence for RNA recombination between helper and mutant RNAs, and we did not observe reversions in the transfected mutants. Furthermore, we established a transient complementation assay based on the cotransfection of helper and mutant RNAs. Using this assay, we extended our results and demonstrated that (i) inactivating NS5A mutations affecting the amino-terminal amphipathic helix cannot be complemented in trans; (ii) replication of the helper RNA is not necessary to allow efficient trans-complementation; and (iii) the minimal sequence required for trans-complementation of lethal NS5A mutations is NS3 to -5A, whereas NS5A expressed alone does not restore RNA replication. In summary, our results provide the first insight into the functional organization of the HCV replication complex.


2008 ◽  
Vol 83 (5) ◽  
pp. 2338-2348 ◽  
Author(s):  
Misao Kuroki ◽  
Yasuo Ariumi ◽  
Masanori Ikeda ◽  
Hiromichi Dansako ◽  
Takaji Wakita ◽  
...  

ABSTRACT Arsenic trioxide (ATO), a therapeutic reagent used for the treatment of acute promyelocytic leukemia, has recently been reported to increase human immunodeficiency virus type 1 infectivity. However, in this study, we have demonstrated that replication of genome-length hepatitis C virus (HCV) RNA (O strain of genotype 1b) was notably inhibited by ATO at submicromolar concentrations without cell toxicity. RNA replication of HCV-JFH1 (genotype 2a) and the release of core protein into the culture supernatants were also inhibited by ATO after the HCV infection. To clarify the mechanism of the anti-HCV activity of ATO, we examined whether or not PML is associated with this anti-HCV activity, since PML is known to be a target of ATO. Interestingly, we observed the cytoplasmic translocation of PML after treatment with ATO. However, ATO still inhibited the HCV RNA replication even in the PML knockdown cells, suggesting that PML is dispensable for the anti-HCV activity of ATO. In contrast, we found that N-acetyl-cysteine, an antioxidant and glutathione precursor, completely and partially eliminated the anti-HCV activity of ATO after 24 h and 72 h of treatment, respectively. In this context, it is worth noting that we found an elevation of intracellular superoxide anion radical, but not hydrogen peroxide, and the depletion of intracellular glutathione in the ATO-treated cells. Taken together, these findings suggest that ATO inhibits the HCV RNA replication through modulation of the glutathione redox system and oxidative stress.


2004 ◽  
Vol 78 (7) ◽  
pp. 3480-3488 ◽  
Author(s):  
Lu Gao ◽  
Hideki Aizaki ◽  
Jian-Wen He ◽  
Michael M. C. Lai

ABSTRACT The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.


Sign in / Sign up

Export Citation Format

Share Document