scholarly journals P2′ Benzene Carboxylic Acid Moiety Is Associated with Decrease in Cellular Uptake: Evaluation of Novel Nonpeptidic HIV-1 Protease Inhibitors Containing P2bis-Tetrahydrofuran Moiety

2013 ◽  
Vol 57 (10) ◽  
pp. 4920-4927 ◽  
Author(s):  
Ravikiran S. Yedidi ◽  
Kenji Maeda ◽  
W. Sean Fyvie ◽  
Melinda Steffey ◽  
David A. Davis ◽  
...  

ABSTRACTGRL007 and GRL008, two structurally related nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) as the P2 moiety and a sulfonamide isostere consisting of benzene carboxylic acid and benzene carboxamide as the P2′ moiety, respectively, were evaluated for their antiviral activity and interactions with wild-type protease (PRWT). Both GRL007 (Kiof 12.7 pM with PRWT) and GRL008 (Kiof 8.9 pM) inhibited PRWTwith high potencyin vitro. X-ray crystallographic analysis of PRWTin complex with GRL007 or GRL008 showed that thebis-THF moiety of both compounds has three direct polar contacts with the backbone amide nitrogen atoms of Asp29 and Asp30 of PRWT. The P2′ moiety of both compounds showed one direct contact with the backbone of Asp30′ and a bridging polar contact with Gly48′ through a water molecule. Cell-based antiviral assays showed that GRL007 was inactive (50% effective concentration [EC50] of >1 μM) while GRL008 was highly active (EC50of 0.04 μM) against wild-type HIV-1. High-performance liquid chromatography (HPLC)/mass spectrometry-based cellular uptake assays showed 8.1- and 84-fold higher intracellular concentrations of GRL008 than GRL007 in human MT-2 and MT-4 cell extracts, respectively. Thus, GRL007, in spite of its favorable enzyme-inhibitory activity and protease binding profile, exhibited a lack of antiviral activity in cell-based assays, most likely due to its compromised cellular uptake associated with its P2′ benzene carboxylic acid moiety. The anti-HIV-1 potency, favorable toxicity, and binding profile of GRL008 suggest that further optimization of the P2′ moiety may improve its antiretroviral features.

Author(s):  
Masayuki Amano ◽  
Ravikiran S. Yedidi ◽  
Pedro Miguel Salcedo-Gómez ◽  
Hironori Hayashi ◽  
Kazuya Hasegawa ◽  
...  

To date, there are no specific treatment regimens for the HIV-1-related central nervous system (CNS) complications, such as HIV-1-associated neurocognitive disorders (HAND). In the present study, we report that two newly generated CNS-targeting HIV-1 protease inhibitors (PIs), GRL-08513 and GRL-08613, which have P1-3,5- bis -fluorophenyl- or P1- para -monofluorophenyl-ring, and P2-tetrahydropyrano-tetrahydrofuran ( Tp -THF) with a sulfonamide isostere, are potent against wild-type HIV-1s and multiple clinically isolated HIV-1s (EC 50 : 0.0001∼0.0032 μM). As assessed with HIV-1 variants that had been selected in vitro to propagate at 5 μM concentration of each HIV-1 PI (atazanavir, lopinavir, or amprenavir), GRL-08513 and GRL-08613 efficiently inhibited the replication of these highly-PI-resistant variants (EC 50 : 0.003∼0.006 μM). GRL-08513 and GRL-08613 also maintained their antiviral activity against HIV-2 ROD as well as severe multi-drug-resistant clinical HIV-1 variants. Additionally, when we assessed with the in vitro blood-brain barrier (BBB) reconstruction system, GRL-08513 and GRL-08613 showed the most promising properties of CNS-penetration among the evaluated compounds including the majority of FDA-approved cART drugs. In the crystallographic analysis of compound-protease (PR) complexes, it was demonstrated that the Tp -THF rings at the P2 moiety of GRL-08513 and GRL-08613 form robust hydrogen-bond interactions with the active-site of HIV-1 PR. Furthermore, both the P1-3,5- bis -fluorophenyl- and P1- para -monofluorophenyl-rings sustain greater contact surfaces and form stronger van der Waals interactions with PR compared to the case of darunavir-PR complex. Taken together, these results strongly suggest that GRL-08513 and GRL-08613 have favorable features for the patients infected with wild-type/multi-drug-resistant HIV-1s, and might serve as candidates of preventive and/or therapeutic for HAND and other CNS complications.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Shin-ichiro Hattori ◽  
Hironori Hayashi ◽  
Haydar Bulut ◽  
Kalapala Venkateswara Rao ◽  
Prasanth R. Nyalapatla ◽  
...  

ABSTRACTWe generated two novel nonpeptidic HIV-1 protease inhibitors (PIs), GRL-001-15 and GRL-003-15, which contain unique crown-like tetrahydropyranofuran (Crn-THF) and P2′-cyclopropyl-aminobenzothiazole (Cp-Abt) moieties as P2 and P2′ ligands, respectively. GRL-001-15 and GRL-003-15 havemeta-monofluorophenyl andpara-monofluorophenyl at the P1 site, respectively, exert highly potent activity against wild-type HIV-1 with 50% effective concentrations (EC50s) of 57 and 50 pM, respectively, and have favorable cytotoxicity profiles with 50% cytotoxic concentrations (CC50s) of 38 and 11 μM, respectively. The activity of GRL-001-15 against multi-PI-resistant HIV-1 variants was generally greater than that of GRL-003-15. The EC50of GRL-001-15 against an HIV-1 variant that was highly resistant to multiple PIs, including darunavir (DRV) (HIV-1DRVRP30), was 0.17 nM, and that of GRL-003-15 was 3.3 nM, while DRV was much less active, with an EC50of 216 nM. The emergence of HIV-1 variants resistant to GRL-001-15 and GRL-003-15 was significantly delayed compared to that of variants resistant to selected PIs, including DRV. Structural analyses of wild-type protease (PRWT) complexed with the novel PIs revealed that GRL-001-15’smeta-fluorine atom forms halogen bond interactions (2.9 and 3.0 Å) with Gly49 and Ile50, respectively, of the protease flap region and with Pro81′ (2.7 and 3.2 Å), which is located close to the protease active site, and that two fluorine atoms of GRL-142-13 form multiple halogen bond interactions with Gly49, Ile50, Pro81′, Ile82′, and Arg8′. In contrast, GRL-003-15 forms halogen bond interactions with Pro81′ alone, suggesting that the reduced antiviral activity of GRL-003-15 is due to the loss of the interactions with the flap region.


2008 ◽  
Vol 52 (4) ◽  
pp. 1545-1548 ◽  
Author(s):  
Delphine Desbois ◽  
Bénédicte Roquebert ◽  
Gilles Peytavin ◽  
Florence Damond ◽  
Gilles Collin ◽  
...  

ABSTRACT We determine phenotypic susceptibility of human immunodeficiency virus type 2 (HIV-2) isolates to amprenavir, atazanavir, darunavir, indinavir, lopinavir, nelfinavir, saquinavir, and tipranavir. Saquinavir, lopinavir, and darunavir are potent against wild-type HIV-2 isolates and should be preferred as first-line options for HIV-2-infected patients. Other protease inhibitors are less active against HIV-2 than against HIV-1.


1997 ◽  
Vol 41 (5) ◽  
pp. 1058-1063 ◽  
Author(s):  
S M Poppe ◽  
D E Slade ◽  
K T Chong ◽  
R R Hinshaw ◽  
P J Pagano ◽  
...  

PNU-140690 is a member of a new class of nonpeptidic human immunodeficiency virus (HIV) protease inhibitors (sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones) discovered by structure-based design. PNU-140690 has excellent potency against a variety of HIV type 1 (HIV-1) laboratory strains and clinical isolates, including those resistant to the reverse transcriptase inhibitors zidovudine or delavirdine. When combined with either zidovudine or delavirdine, PNU-140690 contributes to synergistic antiviral activity. PNU-140690 is also highly active against HIV-1 variants resistant to peptidomimetic protease inhibitors, underscoring the structural distinctions between PNU-140690 and substrate analog protease inhibitors. PNU-140690 retains good antiviral activity in vitro in the presence of human plasma proteins, and preclinical pharmacokinetic studies revealed good oral bioavailability. Accordingly, PNU-140690 is a candidate for clinical evaluation.


2013 ◽  
Vol 57 (11) ◽  
pp. 5320-5329 ◽  
Author(s):  
Steffen Wildum ◽  
Daniela Paulsen ◽  
Kai Thede ◽  
Helga Ruebsamen-Schaeff ◽  
Holger Zimmermann

ABSTRACTNonnucleoside reverse transcriptase inhibitors (NNRTIs) are important and frequently used elements of highly active antiretroviral therapy (HAART) for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. However, the development of drug resistance, as well as the side effects of existing drugs, defines a medical need for novel NNRTIs with excellent tolerability, improved activity against NNRTI-resistant viruses, and a low barrier to resistance. Within the chemical class of diarylpyrazole-[imidazolidinone]-carboxamides, AIC292 was identified as a promising novel HIV-1 NNRTI and has successfully completed single-dose clinical phase I studies. Here, we report on the antiviral activity of AIC292, evaluatedin vitroagainst wild-type and NNRTI-resistant HIV-1 isolates andin vivousing an engineered mouse xenograft model. AIC292 inhibited wild-type HIV-1 laboratory strains at low nanomolar concentrations, was well tolerated in different cell lines, and showed excellent selectivity in a lead profiling screen. In addition, activity of AIC292 could be demonstrated against a broad panel of wild-type HIV-1 group M and group O clinical isolates. AIC292 also retained activity against viruses harboring NNRTI resistance-associated mutations (RAMs), including the most prevalent variants, K103N, Y181C, and G190A. Interestingly, viruses bearing the L100I RAM were hypersusceptible to AIC292. Two-drug combination assays showed no antagonistic interactions between AIC292 and representative marketed HIV drugs with regard to antiviral activity. Furthermore, AIC292 displayed potent antiviralin vivoefficacy in a mouse xenograft model when applied once daily. Taken together, these data show that AIC292 represents a molecule with the antiviral properties of a novel NNRTI for the treatment of HIV-1 infection.


Author(s):  
Ira Dicker ◽  
Jerry L. Jeffrey ◽  
Tricia Protack ◽  
Zeyu Lin ◽  
Mark Cockett ◽  
...  

HIV-1 maturation inhibitors (MIs) offer a novel mechanism of action and potential for use in HIV-1 treatment. Prior MIs displayed clinical efficacy but were associated with the emergence of resistance and some gastrointestinal tolerability events. Treatment with the potentially safer next-generation MI GSK3640254 (GSK’254) resulted in up to a 2-log 10 viral load reduction in a phase IIa proof-of-concept study. In vitro experiments have defined the antiviral and resistance profile for GSK’254. The compound displayed strong antiviral activity against a library of subtype B and C chimeric viruses containing Gag polymorphisms and site-directed mutants previously shown to affect potency of earlier-generation MIs, with a mean protein-binding adjusted 90% effective concentration of 33 nM. Furthermore, GSK’254 exhibited robust antiviral activity against a panel of HIV-1 clinical isolates, with a mean EC 50 of 9 nM. Mechanistic studies established that bound GSK’254 dissociated on average 7.1-fold more slowly from wild-type Gag virus-like particles (VLPs) compared with a previous-generation MI. In resistance studies, the previously identified A364V Gag region mutation was selected under MI pressure in cell culture and during the phase IIa clinical study. As expected, GSK’254 inhibited cleavage of p25 in a range of polymorphic HIV-1 Gag VLPs. Virus-like particles containing the A364V mutation exhibited a p25 cleavage rate 9.3 times faster than wild-type, providing a possible mechanism for MI resistance. The findings demonstrate that GSK’254 potently inhibits a broad range of HIV-1 strains expressing Gag polymorphisms.


1987 ◽  
Vol 7 (10) ◽  
pp. 3694-3704
Author(s):  
C Prives ◽  
Y Murakami ◽  
F G Kern ◽  
W Folk ◽  
C Basilico ◽  
...  

Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.


2007 ◽  
Vol 51 (11) ◽  
pp. 4036-4043 ◽  
Author(s):  
Serge Dandache ◽  
Guy Sévigny ◽  
Jocelyn Yelle ◽  
Brent R. Stranix ◽  
Neil Parkin ◽  
...  

ABSTRACT Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (Ki , ∼36 pM, and 50% effective concentration [EC50], ∼16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC50 for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development.


1999 ◽  
Vol 43 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Gadi Borkow ◽  
Dominique Arion ◽  
Mark A. Wainberg ◽  
Michael A. Parniak

ABSTRACT N-[4-Chloro-3-(3-methyl-2-butenyloxy)phenyl]-2-methyl-3-furancarbothioamide (UC781) is an exceptionally potent nonnucleoside inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. We found that a 1:1 molar combination of UC781 and 3′-azido-3′-deoxythymidine (AZT) showed high-level synergy in inhibiting the replication of AZT-resistant virus, implying that UC781 can restore antiviral activity to AZT against AZT-resistant HIV-1. Neither the nevirapine plus AZT nor the 2′,5′-bis-O-(t-butyldimethylsilyl)-3′-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide plus AZT combinations had this effect. Studies with purified HIV-1 reverse transcriptase (from a wild type and an AZT-resistant mutant) showed that UC781 was a potent inhibitor of the pyrophosphorolytic cleavage of nucleotides from the 3′ end of the DNA polymerization primer, a process that we have proposed to be critical for the phenotypic expression of AZT resistance. Combinations of UC781 plus AZT did not act in synergy to inhibit the replication of either wild-type virus or UC781-resistant HIV-1. Importantly, the time to the development of viral resistance to combinations of UC781 plus AZT is significantly delayed compared to the time to the development of resistance to either drug alone.


Sign in / Sign up

Export Citation Format

Share Document