scholarly journals Pharmacodynamics of Minocycline against Staphylococcus aureus in an In Vitro Pharmacokinetic Model

2008 ◽  
Vol 52 (12) ◽  
pp. 4370-4373 ◽  
Author(s):  
Karen E. Bowker ◽  
Alan R. Noel ◽  
Alasdair P. MacGowan

ABSTRACT Free drug serum concentrations of minocycline associated with the doses given to humans (100 mg every 12 hours for 24 hours) were simulated in an in vitro hollow-fiber pharmacokinetic model. Four strains of methicillin (meticillin)-resistant Staphylococcus aureus (MRSA), United Kingdom EMRSA 15 and 16 plus a pair of blood culture isolates before and after long-term minocycline treatment, were employed. The minocycline MICs for these four strains were 0.04 mg/liter, 0.19 mg/liter, 0.06 mg/liter, and 0.75 mg/liter. The antibacterial effect (ABE) of minocycline was measured using the area under the bacterial kill curve to 24 h (AUBKC) and the log change in viable count at 24 h (d24). The ABEs of minocycline with and without the addition of rifampin (rifampicin) were compared to those of vancomycin, and dose escalation and fractionation were used to determine the dominant pharmacodynamic index and its size. Minocycline alone produced a 1.5- to 2.0-log10-unit reduction in viable count for the strains with MICs of <0.2 mg/liter, while the addition of rifampin increased the ABE for these strains (P < 0.05). Vancomycin simulations produced a reduction in viable counts of 2.8 to 4.5 log units at 24 h, which was equivalent to the minocycline-plus-rifampin combination. Free area under the concentration-time curve (AUC)/MIC was best related to AUBKC or d24 using a sigmoid maximal effect (Emax) model with r 2 of 0.92 and 0.87, respectively, and the AUC/MIC ratios for no change and −1-log-unit, −2-log-unit, and −3-log-unit drop at 24 h were 33.9, 75.9, 1,350, and >2,000, respectively. Fractionation of the dose at free AUC/MICs associated with human doses showed no difference between once, twice, or three times a day dosing. In contrast, fractionation of the dose at a free AUC associated with a static effect indicated that once daily dosing was superior. These data show that minocycline is an AUC/MIC-driven agent at human exposures and that the addition of rifampin may offer benefit in terms of MRSA killing.

2008 ◽  
Vol 52 (4) ◽  
pp. 1401-1406 ◽  
Author(s):  
Alasdair P. MacGowan ◽  
Karen E. Bowker ◽  
Alan R. Noel

ABSTRACT The antibacterial effects (ABE) of tomopenem (formerly RO4908463/CS-023) against seven Staphylococcus aureus strains (methicillin-resistant S. aureus [MRSA] strain tomopenem MICs, 0.5 to 16 mg/liter; methicillin-sensitive S. aureus [MSSA] strain tomopenem MIC, 0.06 mg/liter) were studied in an in vitro pharmacokinetic model. Initially, two human doses were simulated, 750 mg every 8 hours (8hly) and 1,500 mg 8hly intravenously, using S. aureus at a standard inoculum of 106 CFU/ml. There was a rapid clearance of bacteria from the model by 12 h after drug exposure with most strains. Clearance was not related to the tomopenem MIC. The ABE of these two tomopenem dose regimens were also tested at a high inoculum, 108 CFU/ml; in all simulations, there was a >4-log drop in viable count at 24 h. Strains were not cleared from the model at 108 CFU/ml, in contrast to what was seen for the standard inoculum. When the ABE of tomopenem at 750 mg 8hly was compared to those of vancomycin, tomopenem was seen to have a superior effect, as measured by the area under the bacterial kill curve at 24 h (AUBKC24) and 48 h (P < 0.05). Dose ranging studies were performed to provide time-above-MIC (T>MIC) drug exposures of 0 to 100% (8 to 10 doses per strain) with five MRSA/MSSA strains. The T>MIC for a 24-h bacteriostatic effect was 8% ± 5% (range, 1.3% to 15.4%); the T>MIC for a 4-log drop in viable count was 32% ± 18% (range, 12.8% to 36.2%). The T>MIC for a 90% maximum response using AUBKC24 as ABE was 24.9% ± 15.7%. Inoculum had little impact on T>MIC exposures for ABE. There was emergence of resistance to tomopenem in the dose ranging studies, with increased growth of subpopulations on plates containing tomopenem at 2× and 4× the MIC compared to what was seen for preexposure population analysis at T>MICs of <20%. The pharmacodynamics of tomopenem against S. aureus is similar to those of other members of the carbapenem class, with the exception that MRSA is included. These data indicate that tomopenem will have clinically useful activity against MRSA at T>MICs achievable in humans.


2010 ◽  
Vol 54 (6) ◽  
pp. 2391-2400 ◽  
Author(s):  
Anne Sandberg ◽  
Klaus Skovbo Jensen ◽  
Pierre Baudoux ◽  
Françoise Van Bambeke ◽  
Paul M. Tulkens ◽  
...  

ABSTRACT Antibiotic treatment of Staphylococcus aureus infections is often problematic due to the slow response and recurrences. The intracellular persistence of the staphylococci offers a plausible explanation for the treatment difficulties because of the impaired intracellular efficacies of the antibiotics. The intra- and extracellular time- and concentration-kill relationships were examined in vitro with THP-1 cells and in vivo by use of a mouse peritonitis model. The in vivo model was further used to estimate the most predictive pharmacokinetic/pharmacodynamic (PK/PD) indices (the ratio of the maximum concentration of drug in plasma/MIC, the ratio of the area under the concentration-time curve/MIC, or the cumulative percentage of a 24-h period that the free [f] drug concentration exceeded the MIC under steady-state pharmacokinetic conditions [fT MIC]) for dicloxacillin (DCX) intra- and extracellularly. In general, DCX was found to have similar intracellular activities, regardless of the model used. Both models showed (i) the relative maximal efficacy (1-log-unit reduction in the numbers of CFU) of DCX intracellularly and (ii) the equal relative potency of DCX intra- and extracellularly, with the MIC being a good indicator of the overall response in both situations. Discordant results, based on data obtained different times after dosing, were obtained from the two models when the extracellular activity of DCX was measured, in which the in vitro model showed a considerable reduction in the number of CFU from that in the original inoculum (3-log-unit decrease in the number of CFU after 24 h), whereas the extracellular CFU reduction achieved in vivo after 4 h did not exceed 1 log unit. Multiple dosing of DCX in vivo revealed increased extra- and intracellular efficacies (2.5 log and 2 log units of reduction in the numbers of CFU after 24 h, respectively), confirming that DCX is a highly active antistaphylococcal antibiotic. PK/PD analysis revealed that fT MIC is the index that is the most predictive of the outcome of infection both intra- and extracellularly.


1998 ◽  
Vol 42 (11) ◽  
pp. 2848-2852 ◽  
Author(s):  
Alexander A. Firsov ◽  
Sergey N. Vostrov ◽  
Alexander A. Shevchenko ◽  
Stephen H. Zinner ◽  
Giuseppe Cornaglia ◽  
...  

ABSTRACT Multiple predictors of fluoroquinolone antimicrobial effects (AMEs) are not usually examined simultaneously in most studies. To compare the predictive potentials of the area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC), the AUC above MIC (AUCeff), and the time above MIC (T eff), the kinetics of killing and regrowth of four bacterial strains exposed to monoexponentially decreasing concentrations of ciprofloxacin were studied in an in vitro dynamic model. The MICs of ciprofloxacin for clinical isolates ofStaphylococcus aureus, Escherichia coli11775 (I) and 204 (II), and Pseudomonas aeruginosa were 0.6, 0.013, 0.08, and 0.15 μg/ml, respectively. The simulated values of AUC were designed to provide similar 1,000-fold (S. aureus, E. coli I, and P. aeruginosa) or 2,000-fold (E. coli II) ranges of the AUC/MIC. In each case except for the highest AUC/MIC ratio, the observation periods included complete regrowth in the time-kill curve studies. The AME was expressed by its intensity,I E (the area between the control growth and time-kill and regrowth curves up to the point where the viable counts of regrowing bacteria are close to the maximum values observed without drug). For most AUC ranges the I E-AUC curves were fitted by an E max (maximal effect) model, whereas the effects observed at very high AUCs were greater than those predicted by the model. The AUCs that produced 50% of maximal AME were proportional to the MICs for the strains studied, but maximal AMEs (I E max ) and the extent of sigmoidicity (s) were not related to the MIC. BothT eff and log AUC/MIC correlated well withI E (r 2 = 0.98 in both cases) in a species-independent fashion. UnlikeT eff or log AUC/MIC, a specific relationship between I E and log AUCeff was inherent in each strain. Although each I E and log AUCeff plot was fitted by linear regression (r 2 = 0.97 to 0.99), these plots were not superimposed and therefore are bacterial species dependent. Thus, AUC/MIC and T eff were better predictors of ciprofloxacin’s AME than AUCeff. This study suggests that optimal predictors of the AME produced by a given quinolone (intraquinolone predictors) may be established by examining its AMEs against bacteria of different susceptibilities.T eff was shown previously also to be the best interquinolone predictor, but unlike AUC/MIC, it cannot be used to compare different quinolones. AUC/MIC might be the best predictor of the AME in comparisons of different quinolones.


1996 ◽  
Vol 40 (3) ◽  
pp. 627-632 ◽  
Author(s):  
K J Madaras-Kelly ◽  
B E Ostergaard ◽  
L B Hovde ◽  
J C Rotschafer

Several investigators have suggested that the 24-h area under the concentration-time curve (AUC)/MIC ratio (AUC/MIC24 or AUIC24) can be used to make comparisons of antimicrobial activity between fluoroquinolone antibiotics. Limited data exist regarding the generic predictive ability of AUC/MIC24 for the antimicrobial effects of fluoroquinolones. The purposes of the present investigation were to determine if the AUC/MIC24 can be used as a generic outcome predictor of fluoroquinolone antibacterial activity and to determine if a similar AUC/MIC24 breakpoint can be established for different fluoroquinolones. Using an in vitro pharmacodynamic model, 29 duplicate concentration time-kill curve experiments simulated AUC/MIC24s ranging from 52 to 508 SIT-1.h (inverse serum inhibitory titer integrated over time) with ciprofloxacin or ofloxacin against three strains of Pseudomonas aeruginosa. Each 24-h experiment was performed in cation-supplemented Mueller-Hinton broth with a starting inoculum of 10(6) CFU/ml. At timed intervals cation-supplemented Mueller-Hinton broth samples were collected for CFU and fluoroquinolone concentration determinations. Transformation of bacterial counts into the cumulative bacterial effect parameter of the 24-h area under the effect curve (AUEC24) was performed for each concentration time-kill curve. Multivariate regression analysis was used to compare pharmacodynamic predictors (AUC/MIC24, 24-h AUC, peak concentration [Cmax] to MIC ratios [Cmax:MIC], etc.) with ln AUEC24. To identify threshold breakpoint AUC/MIC24s, AUEC24s were stratified by the magnitude of AUC/MIC24 into subgroups, which were analyzed for differences in antibacterial effect. The Kruskal-Wallis test and subsequent Tukey's multiple comparison test were used to determine which AUC/MIC subgroups were significantly different. Multiple regression analysis revealed that only AUC/MIC24 (r2 = 0.65) and MIC (r2 = 0.03) were significantly correlated with antibacterial effect. At similar AUC/MIC24s, yet different MICs, Cmaxs, or elimination half-lives, the AUEC24s were similar for both fluoroquinolones. The relationship between AUC/MIC24 and ln AUEC24 was best described by a sigmoidal maximal antimicrobial effect (Emax) model (r2 = 0.72; Emax = 9.1; AUC/MIC50 = 119 SIT-1.h; S = 2.01 [S is an exponent that reflects the degree of sigmoidicity]). Ciprofloxacin-bacteria AUC/MIC24 values of < 100 SIT-1.h were significantly different (P < 0.05) from the AUC/MIC24 values of > 100 SIT-1.h. An ofloxacin AUC/MIC24 of > 100 SIT-1.h and an AUC/MIC24 of < 100 SIT-1.h exhibited a trend toward a significant difference (P > 0.05 but < 0.1). The inverse relationship between drug exposure and MIC increase postexposure was described by a sigmoidal fixed Emax model (AUC/MIC24, r2 = 0.40; AUC/MIC50 = 95 SIT-1.h; S = 1.97; Cmax:MIC, r2 = 0.41; Cmax:MIC50 = 7.3; S = 2.01). These data suggest that AUC/MIC24 may be the most descriptive measurement of fluoroquinolone antimicrobial activity against P. aeruginosa, that ofloxacin and ciprofloxacin have similar AUC/MIC24 threshold breakpoints at approximately 100 SIT-1.h, that the concentration-dependent selection of resistant organisms may parallel the threshold breakpoint of the antimicrobial effect, and that AUC/MIC24 generically describes the antibacterial effects of different fluoroquinolones.


2010 ◽  
Vol 55 (2) ◽  
pp. 867-873 ◽  
Author(s):  
Alasdair P. MacGowan ◽  
Alan R. Noel ◽  
Sharon Tomaselli ◽  
Heather C. Elliott ◽  
Karen E. Bowker

ABSTRACTThe antibacterial effects of telavancin, vancomycin, and teicoplanin against sixStaphylococcus aureusstrains (1 methicillin-susceptibleS. aureus[MSSA] strain, 4 methicillin-resistantS. aureus[MRSA] strains, and 1 vancomycin-intermediateS. aureus[VISA] strain) and threeEnterococcussp. strains (1Enterococcus faecalisstrain, 1Enterococcus faeciumstrain, and 1 vancomycin-resistantE. faecium[VREF] strain) were compared using anin vitropharmacokinetic model of infection. Analyzing the data from all five vancomycin-susceptibleS. aureus(VSSA) strains or all 4 MRSA strains showed that telavancin was superior in its antibacterial effect as measured by the area under the bacterial kill curve at 24 h (AUBKC24) and 48 h (AUBKC48) in comparison to vancomycin or teicoplanin (P< 0.05). Telavancin was also superior to vancomycin and teicoplanin in terms of its greater early killing effect (P< 0.05). Against the threeEnterococcusspp. tested, telavancin was superior to vancomycin in terms of its AUBKC24, AUBKC48, and greater early bactericidal effect (P< 0.05). Dose-ranging studies were performed to provide free-drug area under the concentration-time curve over 24 h in the steady state divided by the MIC (fAUC/MIC) exposures from 0 to 1,617 (7 to 14 exposures per strain) for 5 VSSA, 4 VISA, and the 3Enterococcusstrains. The fAUC/MIC values for a 24-h bacteriostatic effect and a 1-log-unit drop in the viable count were 43.1 ± 38.4 and 50.0 ± 39.0 for VSSA, 3.2 ± 1.3 and 4.3 ± 1.3 for VISA, and 15.1 ± 8.8 and 40.1 ± 29.4 for theEnterococcusspp., respectively. The reason for the paradoxically low fAUC/MIC values for VISA strains is unknown. There was emergence of resistance to telavancin in the dose-ranging studies, as indicated by subpopulations able to grow on plates containing 2× MIC telavancin concentrations compared to the preexposure population analysis profiles. Changes in population analysis profiles were less likely with enterococci than withS. aureus, and the greatest risk of changed profiles occurred for both species at fAUC/MIC ratios of 1 to 10. Maintaining a fAUC/MIC ratio of >50 reduced the risk of subpopulations able to grow on antibiotic-containing media emerging. These data help explain the clinical effectiveness of telavancin against MRSA and indicate that telavancin may have clinically useful activity againstEnterococcusspp., and perhaps also VISA, at human doses of 10 mg/kg of body weight/day. In addition, they support a clinical breakpoint of sensitive at ≤1 mg/liter for bothS. aureusandEnterococcusspp.


2000 ◽  
Vol 44 (7) ◽  
pp. 1846-1849 ◽  
Author(s):  
I. Gustafsson ◽  
E. Hjelm ◽  
O. Cars

ABSTRACT The ketolides HMR 3004 and HMR 3647 (telithromycin) are a new class of macrolides that have a potential clinical efficacy against intracellular pathogens. The objectives of this study were to investigate the MIC, minimum bactericidal concentration, and time-dependent killing of two Chlamydia pneumoniaestrains of the two ketolides. The killing effect was also studied with a newly developed intracellular in vitro kinetic model. Furthermore, HMR 3647 was studied for the effect of a subinhibitory concentration of 0.5 times the MIC after a preexposure of 10 times the MIC during 12 h. The MICs for both strains were 0.0039 and 0.0156 mg/liter for HMR 3004 and HMR 3647, respectively. Killing with 10 times the MIC was time dependent, increasing from a 1-log-unit decrease in the number of inclusions per well at 48 h to a maximal effect of 2.8-log-unit decrease after 96 h. A preexposure of 10 times the MIC of HMR 3647 for 12 h followed by a subinhibitory concentration of 0.5 times the MIC increased the killing effect to a 1.2-log-unit reduction in inclusions per well. An exposure for 12 h gave poor reduction of inclusions, while a static dose of 10 times the MIC for 72 h showed a 2.2-log-unit reduction in inclusions per well. In the kinetic model, a small number of inclusions were detected after 72 h by one exposure of 10 times the MIC. Regrowth could not be detected after 120 h. The ketolides HMR 3004 and HMR 3647 have bactericidal activity and show a significant sub-MIC effect on the intracellular pathogenC. pneumoniae.


2006 ◽  
Vol 51 (3) ◽  
pp. 1089-1091 ◽  
Author(s):  
Brian T. Tsuji ◽  
Michael J. Rybak ◽  
Kerry L. Lau ◽  
George Sakoulas

ABSTRACT Simulated therapeutic vancomycin exposures were evaluated against agr wild-type and knockout Staphylococcus aureus groups I, II, III, and IV using an in vitro pharmacodynamic model. All agr groups developed intermediate resistance to vancomycin after subtherapeutic exposure. The free unbound fraction of the area under the concentration-time curve (fAUC/MIC) required to suppress resistance was fourfold higher (P < 0.001) in agr dysfunctional strains (112 to 169) than that in parent wild-type strains (28).


2011 ◽  
Vol 55 (4) ◽  
pp. 1436-1442 ◽  
Author(s):  
Alasdair P. MacGowan ◽  
Alan Noel ◽  
Sharon Tomaselli ◽  
Heather Elliott ◽  
Karen Bowker

ABSTRACTSimulations of administration of razupenem at 1 g every 12 h by 1-h intravenous (i.v.) infusion were performed in anin vitropharmacokinetic model of infection. The antibacterial effect of this razupenem dosing regimen against six strains ofStaphylococcus aureus(one methicillin-sensitiveS. aureus[MSSA] strain [MIC, 0.015 μg/ml] and five methicillin-resistantS. aureus[MRSA] strains [MIC range, 0.09 to 3 μg/ml]) and five strains ofEnterobacteriaceae(threeEscherichia colistrains [two containing extended-spectrum β-lactamases {ESBLs}] and twoEnterobactersp. strains [one with an AmpC enzyme and the other with a raised razupenem MIC; MIC range, 0.09 to 6 μg/ml]) was assessed. Against the MSSA and MRSA strains, razupenem produced a >3.5-log-unit reduction in viable count after 24 h. There were no changes in population profiles. In a second series of experiments, over 5 days there was rapid initial clearance of MRSA from the model followed by regrowth after 48 h. MRSA colonies appeared on 2× MIC recovery medium after 72 h with strain 33820 (MIC, 3.0 μg/ml) and at 120 h with strain 27706 (MIC, 1.5 μg/ml). AgainstE. coliandEnterobacterspp., razupenem produced a >3.5-log-unit reduction in bacterial counts for all strains except that with an MIC of 6 μg/ml, where razupenem had a notably poorer antibacterial effect. Population profiles were unchanged after 48 h of exposure to razupenem except forEnterobacterstrain 34425 (MIC, 6.0 μg/ml), where colonies were recovered from media containing 2×, 4×, and 8× MIC. In dose-ranging studies with MRSA strains, the percentage of the dosing interval that the free drug concentration remained higher than the pathogen MIC (fT>MIC) for a 24-h bacteriostatic effect was 5.0% ± 1.4%, and that for a 1-log-unit reduction in count was 12.5% ± 5.8%. Population profiles indicated growth on 2× MIC recovery medium atfT>MIC values of 1 to 35% but not at a value of >35%. In a similar set of experiments withEnterobacteriaceae, thefT>MIC for a 24-h bacteriostatic effect was 34.2% ± 7.6% and that for a 1-log-unit reduction in count was 42.5% ± 7.8%. Population analysis profiles indicated growth on recovery media with 2×, 4×, and 8× MIC atfT>MICs in the range of 1 to 69% but rarely at values of ≥70%. In conclusion, razupenem at simulated human doses of 1 g i.v. every 12 h has a marked antibacterial effect on MSSA and MRSA strains with MICs of ≤3.0 μg/ml andEnterobacteriaceaewith MICs of ≤0.4 μg/ml.fT>MIC targets of ≥35% for MRSA and ≥70% forEnterobacteriaceaeshould provide significant antibacterial effects combined with low risks of changing pathogen antibiotic population profiles.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


2012 ◽  
Vol 56 (10) ◽  
pp. 5009-5015 ◽  
Author(s):  
Karen E. Bowker ◽  
Alan R. Noel ◽  
Sharon G. Tomaselli ◽  
Heather Elliott ◽  
Alasdair P. MacGowan

ABSTRACTAnin vitrodilutional pharmacokinetic model of infection was used to study the pharmacodynamics of doripenem in terms of the ability to killPseudomonas aeruginosaorAcinetobacter baumanniiand also changes in their population profiles. In dose-ranging studies, the cumulative percentages of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (TMICs) required for doripenem to produce a 24-h bacteriostatic effect and a −2-log-unit reduction in viable count were 25% ± 11% and 35% ± 13%, respectively, forP. aeruginosa(MIC range, 0.24 to 3 mg/liter) and 20% ± 11% and 33% ± 12%, respectively, forAcinetobacterspp. (MIC range, 0.45 to 3.0 mg/liter). ATMICof >40 to 50% produced a maximum response with both species at 24 h or 48 h of exposure. After 24 h of exposure to doripenem at aTMICin the range of 12.5 to 37.5%,P. aeruginosaandA. baumanniipopulation profiles revealed mutants able to grow on 4× MIC-containing medium; such changes were further amplified by 48 h of exposure. Dose-fractionation experiments targetingTMICs of 12.5%, 25%, or 37.5% as six exposures, two exposures, or a single exposure over 48 h with a single strain ofP. aeruginosaindicated that changes in population profiles were greatest with multiple exposures atTMICtargets of 12.5 or 25%. In contrast, multiple exposures at 37.5%TMICmost effectively suppressed total bacterial counts and changes in population profiles. Simulations of human doses of doripenem of 500 mg, 1,000 mg, 2,000 mg, and 3,000 mg every 8 h over 96 h showed marked initial killing up to 6 h but growback thereafter. Changes in population profiles occurred only in the regimen of 500 mg every 8 h againstP. aeruginosabut occurred with all dose regimens forA. baumanniistrains. A doripenemTMICof ≥40 to 50% is maximally effective in killingP. aeruginosaorA. baumanniiand suppressing changes in population profiles in short-term experiments for up to 48 h; however, aTMICof 12.5 to 25% amplifies population changes, especially with exposures every 8 h. In longer-term experiments, up to 96 h, even doripenem doses of 4 to 6 times those used in human studies proved incapable of pathogen eradication and prevention of changes in population profiles. The association of aTMICof 25 to 37.5% with changes in population profiles has implications in terms of future clinical breakpoint setting.


Sign in / Sign up

Export Citation Format

Share Document