scholarly journals Pharmacokinetic Interaction between Maraviroc and Fosamprenavir-Ritonavir: an Open-Label, Fixed-Sequence Study in Healthy Subjects

2013 ◽  
Vol 57 (12) ◽  
pp. 6158-6164 ◽  
Author(s):  
Manoli Vourvahis ◽  
Anna Plotka ◽  
Laure Mendes da Costa ◽  
Annie Fang ◽  
Jayvant Heera

ABSTRACTThis open-label, fixed-sequence, phase 1 study evaluated the pharmacokinetic interaction between maraviroc (MVC) and ritonavir-boosted fosamprenavir (FPV/r) in healthy subjects. In period 1, subjects received 300 mg of MVC twice daily (BID; cohort 1) or once daily (QD; cohort 2) for 5 days. In period 2, cohort 1 subjects received 700/100 mg of FPV/r BID alone on days 1 to 10 and then FPV/r at 700/100 mg BID plus MVC at 300 mg BID on days 11 to 20; cohort 2 subjects received FPV/r at 1,400/100 mg QD alone on days 1 to 10 and then FPV/r at 1,400/100 mg QD plus MVC at 300 mg QD on days 11 to 20. Pharmacokinetic parameters, assessed on day 5 of period 1 and on days 10 and 20 of period 2, included the maximum plasma concentration (Cmax), the concentration at end of dosing interval (Cτ), and the area under the curve over dosing interval (AUCτ). Safety and tolerability were also assessed. MVC geometric mean AUCτ,Cmax, andCτwere increased by 149, 52, and 374%, respectively, after BID dosing with FPV/r, and by 126, 45, and 80%, respectively, after QD dosing. Amprenavir (the active form of the prodrug fosamprenavir) and ritonavir exposures were decreased in the presence of MVC with amprenavir AUCτ,Cmax, andCτdecreased by 34 to 36% in the presence of FPV/r plus maraviroc BID and by 15 to 30% with FPV/r plus MVC QD both compared to FPV/r alone. The overall all-causality adverse-event (AE) incidence rate was 96.4%; all AEs were of mild or moderate severity. Commonly reported treatment-related AEs (>20% of patients overall) included diarrhea, fatigue, abdominal discomfort, headache, and nausea. No serious AEs or deaths occurred. In summary, maraviroc exposure increased in the presence of FPV/r, whereas MVC coadministration decreased amprenavir and ritonavir exposures. MVC dosed at 300 mg BID with FPV/r is not recommended due to concerns of lower amprenavir exposures; however, no dose adjustment is warranted with MVC at 150 mg BID in combination with FPV/r based on the available clinical data. MVC plus FPV/r was generally well tolerated; no new safety signals were detected.

2012 ◽  
Vol 57 (1) ◽  
pp. 277-280 ◽  
Author(s):  
Susan L. Ford ◽  
Elizabeth Gould ◽  
Shuguang Chen ◽  
Yu Lou ◽  
Etienne Dumont ◽  
...  

ABSTRACTHIV integrase inhibitors such as raltegravir and elvitegravir halt HIV progression, but treatment-emergent resistance and cross-resistance have been observed. The nonnucleoside reverse transcriptase inhibitor etravirine (ETR) may be used in combination with integrase inhibitors in patients with drug resistance. This single-center, open-label, two-period, single-sequence crossover study evaluated the effects of ETR coadministration on the pharmacokinetic profile of S/GSK1265744, an investigational integrase inhibitor in phase 2 studies. Healthy subjects received 30 mg of S/GSK1265744 alone once daily for 10 days (period 1) and in combination with 200 mg of ETR twice daily for 14 days (period 2). Serial plasma samples for pharmacokinetic analyses were collected on day 10 during period 1 and on day 14 during period 2. All treatments were well tolerated. Etravirine had no effects on S/GSK1265744 geometric mean ratios of the area under the curve from time zero until the end of the dosing interval (1.01; 90% confidence interval [CI], 0.956 to 1.06), of the maximum observed plasma concentration (1.04; 90% CI, 0.987 to 1.09), or of the plasma concentration at the end of the dosing interval (0.999; 90% CI, 0.942 to 1.06). Etravirine pharmacokinetics (PK) parameters observed following coadministration with S/GSK1265744 were in the range of historical values reported for ETR alone in healthy subjects. These results indicate that 30 mg of S/GSK1265744 for 10 days as monotherapy followed by an additional 14 days in combination with ETR was well tolerated in healthy subjects and that no dose adjustment of S/GSK1265744 is required when it is coadministered with ETR.


2010 ◽  
Vol 55 (1) ◽  
pp. 326-330 ◽  
Author(s):  
José Moltó ◽  
Marta Valle ◽  
Cristina Miranda ◽  
Samandhy Cedeño ◽  
Eugenia Negredo ◽  
...  

ABSTRACTThe aim of this open-label, fixed-sequence study was to investigate the potential ofEchinacea purpurea, a commonly used botanical supplement, to interact with the boosted protease inhibitor darunavir-ritonavir. Fifteen HIV-infected patients receiving antiretroviral therapy including darunavir-ritonavir (600/100 mg twice daily) for at least 4 weeks were included.E. purpurearoot extract capsules were added to the antiretroviral treatment (500 mg every 6 h) from days 1 to 14. Darunavir concentrations in plasma were determined by high-performance liquid chromatography immediately before and 1, 2, 4, 6, 8, 10, and 12 h after a morning dose of darunavir-ritonavir on days 0 (darunavir-ritonavir) and 14 (darunavir-ritonavir plus echinacea). Individual darunavir pharmacokinetic parameters were calculated by noncompartmental analysis and compared between days 0 and 14 with the geometric mean ratio (GMR) and its 90% confidence interval (CI). The median age was 49 (range, 43 to 67) years, and the body mass index was 24.2 (range, 18.7 to 27.5) kg/m2. Echinacea was well tolerated, and all participants completed the study. The GMR for darunavir coadministered with echinacea relative to that for darunavir alone was 0.84 (90% CI, 0.63-1.12) for the concentration at the end of the dosing interval, 0.90 (90% CI, 0.74-1.10) for the area under the concentration-time curve from 0 to 12 h, and 0.98 (90% CI, 0.82-1.16) for the maximum concentration. In summary, coadministration ofE. purpureawith darunavir-ritonavir was safe and well tolerated. Individual patients did show a decrease in darunavir concentrations, although this did not affect the overall darunavir or ritonavir pharmacokinetics. Although no dose adjustment is required, monitoring darunavir concentrations on an individual basis may give reassurance in this setting.


2020 ◽  
Vol 3 ◽  
pp. 251581632090508 ◽  
Author(s):  
Chi-Chung Li ◽  
John Palcza ◽  
Jialin Xu ◽  
Bob Thornton ◽  
Wendy Ankrom ◽  
...  

Background: Ubrogepant is a novel, oral calcitonin gene–related peptide receptor antagonist for acute treatment of migraine. This study evaluated potential drug–drug interactions between ubrogepant and an oral contraceptive containing ethinyl estradiol (EE) and norgestimate (NGM). Methods: This open-label, single-center, two-period, fixed-sequence study enrolled healthy, postmenopausal or oophorectomized, adult women. In period 1, participants received a single oral dose of EE 0.035 mg/NGM 0.25 mg (EE-NGM) followed by a 7-day washout. In period 2, participants received oral ubrogepant 50 mg daily on days 1–14; single-dose EE-NGM was coadministered with ubrogepant on day 10. Pharmacokinetic parameters for plasma EE and norelgestromin (NGMN) were compared with and without ubrogepant. Results: Twenty-two participants aged 46–66 years were enrolled; 21 completed the study. Geometric mean ratios and 90% confidence intervals for the comparison of EE-NGM + ubrogepant to EE-NGM alone were contained within 0.80 and 1.25 for area under the plasma drug concentration–time curve (AUC) from time zero to infinity (AUC0–∞; 0.96 [0.91, 1.01]) and C max (0.91 [0.82, 1.004]) of NGMN and AUC0–∞ (0.97 [0.93, 1.01]) of EE, but not C max of EE (0.74 [0.69, 0.79]). Median t max of EE was delayed following EE-NGM + ubrogepant (3.0 h) versus EE-NGM alone (median of 1.5 h), whereas median t max of NGMN was unchanged (1.5 h). Geometric mean apparent terminal half-life ( t ½) was similar with and without ubrogepant for EE (23 vs. 21 h) and NGMN (36 h both conditions). All ubrogepant-related adverse events were mild or moderate. Conclusion: Ubrogepant did not demonstrate potential for clinically meaningful drug–drug interactions with an EE-NGM oral contraceptive. Trial registration: Not applicable (phase 1 trial)


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Ka Lai Yee ◽  
Rosa I. Sanchez ◽  
Patrice Auger ◽  
Rachael Liu ◽  
Li Fan ◽  
...  

ABSTRACT Doravirine is a novel, potent nonnucleoside reverse transcriptase inhibitor (NNRTI) for the treatment of patients with human immunodeficiency virus type 1 (HIV-1) infection that demonstrates a high genetic barrier to resistance and that has been well tolerated in studies to date. Doravirine is a candidate for patients switching from less-well-tolerated NNRTIs, such as efavirenz. While doravirine is a cytochrome P450 3A4 (CYP3A4) substrate, efavirenz induces CYP3A4; therefore, the pharmacokinetics of both drugs following a switch from efavirenz to doravirine were assessed. This was a 3-period, fixed-sequence, open-label study. Healthy adults were dosed with doravirine at 100 mg for 5 days once daily (QD) (period 1). Following a 7-day washout, efavirenz was administered at 600 mg QD for 14 days (period 2). Subsequently, doravirine was administered at 100 mg QD for 14 days (period 3). Blood samples were collected for pharmacokinetic analyses. Twenty healthy subjects were enrolled, and 17 completed the study. One day after efavirenz cessation, the doravirine area under the concentration-time curve from predosing to 24 h postdosing (AUC0–24), maximum observed plasma concentration (C max), and observed plasma concentration at 24 h postdosing (C 24) were reduced by 62%, 35%, and 85%, respectively, compared with the values with no efavirenz pretreatment. These decreases recovered to 32%, 14%, and 50% for AUC0–24, C max, and C 24, respectively, by day 14 after efavirenz cessation. The doravirine C 24 reached projected therapeutic trough concentrations, based on in vitro efficacy, on day 2 following efavirenz cessation. Geometric mean efavirenz concentrations were 3,180 ng/ml on day 1 and 95.7 ng/ml on day 15, and efavirenz was present at therapeutic concentrations (>1,000 ng/ml) until day 4. Though doravirine exposure was transiently decreased following efavirenz treatment cessation, dose adjustment may not be necessary to maintain therapeutic concentrations of at least one drug during switching in a virologically suppressed population.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Andrew Bishop

Perindopril is an angiotensin converting-enzyme inhibitor with a proven track record in cardiovascular clinical trials. Traditionally formulated as the t -butyl amine (“erbumine”) salt, perindopril’s arginine salt has been FDA-approved in combination with amlodipine besylate. The arginine salt has the advantage of being more stable at higher temperatures or humidity. To demonstrate bioequivalence (using the standard FDA definition of 90% confidence intervals that are within 80-125% of the values seen with the reference product), the bioavailability of the two perindopril formulations was compared. After screening 121 healthy subjects, 30 (73% male, 38.9±9.5 years of age, 67% African American, BMI of 26.6±2.7 kg/m 2 ) signed informed consent, and were studied in a randomized, single-center, single-dose, open-label, 2-period, 2-way cross-over design with a 14-day washout period. After an overnight fast, perindopril was administered orally with 240 mL of water, and blood samples taken at defined time points. After dose-normalization (the arginine salt has a molecular weight 1.43-fold greater than that of the erbumine salt), all pharmacokinetic parameters for perindopril plasma concentrations were similar between treatments. Mixed model analysis of these parameters demonstrated bioequivalence (e.g., area under the time-plasma concentration curve: 10.2 vs. 10.5 hr•ng/mL/mg, P = 0.54). Very similar results with non-significant differences were also seen for the pharmacokinetics of perindoprilat (perindopril’s active metabolite): 33.3 vs. 38.3 hr•ng/mL/mg, P = 0.17. Two subjects did not complete the perindopril arginine arm of the study: one withdrew consent, and the other experienced a protocol deviation. No subjects experienced a serious adverse event or withdrew due to a treatment-emergent adverse event. Four subjects reported adverse events after perindopril arginine, and two subjects reported neck pain or presyncope after perindopril erbumine. After dose-normalization, these two formulations of perindopril meet all traditional criteria for AB rating and interchangeability.


2016 ◽  
Vol 60 (10) ◽  
pp. 6244-6251 ◽  
Author(s):  
Amit Khatri ◽  
Roger Trinh ◽  
Weihan Zhao ◽  
Thomas Podsadecki ◽  
Rajeev Menon

ABSTRACTThe direct-acting antiviral regimen of 25 mg ombitasvir–150 mg paritaprevir–100 mg ritonavir once daily (QD) plus 250 mg dasabuvir twice daily (BID) is approved for the treatment of hepatitis C virus genotype 1 infection, including patients coinfected with human immunodeficiency virus. This study was performed to evaluate the pharmacokinetic, safety, and tolerability effects of coadministering the regimen of 3 direct-acting antivirals with two antiretroviral therapies (dolutegravir or abacavir plus lamivudine). Healthy volunteers (n= 24) enrolled in this phase I, single-center, open-label, multiple-dose study received 50 mg dolutegravir QD for 7 days or 300 mg abacavir plus 300 mg lamivudine QD for 4 days, the 3-direct-acting-antiviral regimen for 14 days, followed by the 3-direct-acting-antiviral regimen with dolutegravir or abacavir plus lamivudine for 10 days. Pharmacokinetic parameters were calculated to compare combination therapy with 3-direct-acting-antiviral or antiretroviral therapy alone, and safety/tolerability were assessed throughout the study. Coadministration of the 3-direct-acting-antiviral regimen increased the geometric mean maximum plasma concentration (Cmax) and the area under the curve (AUC) of dolutegravir by 22% (central value ratio [90% confidence intervals], 1.219 [1.153, 1.288]) and 38% (1.380 [1.295, 1.469]), respectively. Abacavir geometric meanCmaxand AUC values decreased by 13% (0.873 [0.777, 0.979]) and 6% (0.943 [0.901, 0.986]), while those for lamivudine decreased by 22% (0.778 [0.719, 0.842]) and 12% (0.876 [0.821, 0.934]). For the 3-direct-acting-antiviral regimen, geometric meanCmaxand AUC during coadministration were within 18% of measurements made during administration of the 3-direct-acting-antiviral regimen alone, although trough concentrations for paritaprevir were 34% (0.664 [0.585, 0.754]) and 27% (0.729 [0.627, 0.847]) lower with dolutegravir and abacavir-lamivudine, respectively. All study treatments were generally well tolerated, with no evidence of increased rates of adverse events during combination administration. These data indicate that the 3-direct-acting-antiviral regimen can be administered with dolutegravir or abacavir plus lamivudine without dose adjustment.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Jung-Ryul Kim ◽  
Jin Ah Jung ◽  
Seokuee Kim ◽  
Wooseong Huh ◽  
Jong-Lyul Ghim ◽  
...  

Purpose. We evaluated potential drug-drug interactions between cilostazol and simvastatin, both CYP3A substrates, in healthy subjects. Methods. An open-label, two-period, fixed-sequence clinical study was conducted. Seventeen subjects were given a single oral dose of simvastatin 40 mg on day 1 and multiple oral doses of cilostazol 100 mg twice daily on days 2 to 5 followed by a single dose of cilostazol and simvastatin on day 6. Plasma concentrations of simvastatin and its active metabolite, simvastatin acid, were measured using liquid chromatography-tandem mass spectrometry for pharmacokinetic assessment. Moreover, serum lipid profiles under fasting conditions were determined. Results. The geometric mean ratios of the area under the plasma concentration-time curve from time zero to time infinity of simvastatin combined with cilostazol to that of simvastatin alone were 1.64 (90% CI, 1.38-1.95) for simvastatin and 1.31 (1.04-1.66) for simvastatin acid. In addition, coadministration with cilostazol significantly increased the maximum concentration of simvastatin and simvastatin acid, up to 1.8-fold and 1.6-fold, respectively. However, the effects of a single dose of simvastatin on serum lipid profiles were not affected notably when simvastatin was coadministered with cilostazol. Conclusions. Multiple doses of cilostazol increased the systemic exposure of simvastatin and simvastatin acid following a single dose of simvastatin.


2012 ◽  
Vol 56 (10) ◽  
pp. 5328-5331 ◽  
Author(s):  
José Moltó ◽  
Marta Valle ◽  
Cristina Miranda ◽  
Samandhy Cedeño ◽  
Eugenia Negredo ◽  
...  

ABSTRACTThe aim of this open-label, fixed-sequence study was to investigate the potential of the botanical supplementEchinacea purpureato interact with etravirine, a nonnucleoside reverse transcriptase inhibitor of HIV. Fifteen HIV-infected patients receiving antiretroviral therapy with etravirine (400 mg once daily) for at least 4 weeks were included.E. purpurearoot/extract-containing capsules were added to the antiretroviral treatment (500 mg every 8 h) for 14 days. Etravirine concentrations in plasma were determined by high-performance liquid chromatography immediately before and 1, 2, 4, 6, 8, 10, 12, and 24 h after a morning dose of etravirine on day 0 and etravirine plusE. purpureaon day 14. Individual etravirine pharmacokinetic parameters were calculated by noncompartmental analysis and compared between days 0 and 14 by means of the geometric mean ratio (GMR) and its 90% confidence interval (CI). The median age was 46 years (interquartile range, 41 to 50), and the median body weight was 76 kg (interquartile range, 68 to 92). Echinacea was well tolerated, and all participants completed the study. The GMR for etravirine coadministered withE. purpurearelative to etravirine alone was 1.07 (90% CI, 0.81 to 1.42) for the maximum concentration, 1.04 (90% CI, 0.79 to 1.38) for the area under the concentration-time curve from 0 to 24 h, and 1.04 (90% CI, 0.74 to 1.44) for the concentration at the end of the dosing interval. In conclusion, the coadministration ofE. purpureawith etravirine was safe and well tolerated in HIV-infected patients; our data suggest that no dose adjustment for etravirine is necessary.


2014 ◽  
Vol 989-994 ◽  
pp. 1041-1043
Author(s):  
Ping Liu ◽  
Liang Sun ◽  
Jian Zhang ◽  
Rui Chen Guo

In this single-center, randomized, open-label, 3-way crossover study, subjects received each of the following: a single dose of Tramadol Hydrochloride Injection (THI) 35 mg, a single dose of Promethazine Hydrochloride Injection (PHI) 45 mg, and single dose of Compound Tramadol Hydrochloride Injection (CTHI) 80mg. Blood was collected and plasma was analyzed for the pharmacokinetic parameters (maximum plasma concentration [Cmax], time to Cmax [Tmax], area under the plasma concentration-time curve, plasma elimination half-life, clearance, and apparent volume of distribution) of Tramadol and Promethazine. In general, several pharmacokinetic interactions were observed between Tramadol and Promethazine in the present study.


2012 ◽  
Vol 56 (6) ◽  
pp. 2837-2841 ◽  
Author(s):  
José Moltó ◽  
Marta Valle ◽  
Cristina Miranda ◽  
Samandhy Cedeño ◽  
Eugenia Negredo ◽  
...  

ABSTRACTThe aim of this open-label, fixed-sequence study was to investigate the potential of the botanical supplement milk thistle (silymarin) to interact with the boosted protease inhibitor combination darunavir-ritonavir. Fifteen HIV-infected patients receiving antiretroviral therapy with darunavir-ritonavir (600/100 mg twice daily) for at least 4 weeks were included. Silymarin (150 mg every 8 h) was added to the antiretroviral treatment from days 1 to 14. Darunavir concentrations in plasma were determined by high-performance liquid chromatography immediately before and 1, 2, 4, 6, 8, 10, and 12 h after a morning dose of darunavir-ritonavir on day 0 and darunavir-ritonavir plus silymarin on day 14. Individual darunavir pharmacokinetic parameters were calculated by noncompartmental analysis and compared between days 0 and 14 by means of the geometric mean ratio (GMR) and its 90% confidence interval (CI). The median age was 48 years (interquartile range, 44 to 50 years), and the median body weight was 70 kg (interquartile range, 65 to 84 kg). Silymarin was well tolerated, and all participants completed the study. The GMRs for darunavir coadministered with silymarin relative to darunavir alone were 0.86 (90% CI, 0.70 to 1.05) for the area under the concentration-time curve from 0 to 12 h, 0.83 (90% CI, 0.80 to 0.98) for the maximum concentration, and 0.94 (90% CI, 0.73 to 1.19) for the concentration at the end of the dosing interval. In summary, coadministration of silymarin with darunavir-ritonavir seems to be safe in HIV-infected patients; no dose adjustment for darunavir-ritonavir seems to be necessary.


Sign in / Sign up

Export Citation Format

Share Document