scholarly journals Novel Organization of the Arginine Catabolic Mobile Element and Staphylococcal Cassette ChromosomemecComposite Island and Its Horizontal Transfer between Distinct Staphylococcus aureus Genotypes

2013 ◽  
Vol 57 (11) ◽  
pp. 5774-5777 ◽  
Author(s):  
Artur J. Sabat ◽  
Robin Köck ◽  
Viktoria Akkerboom ◽  
Ron Hendrix ◽  
Robert L. Skov ◽  
...  

ABSTRACTIn this study, 425 methicillin-resistantStaphylococcus aureus(MRSA) isolates recovered in the Dutch-German Euregio were investigated for the presence of the arginine catabolic mobile element (ACME). Sequence analysis by whole-genome sequencing revealed an entirely new organization of the ACME-staphylococcal cassette chromosomemeccomposite island (SCCmec-CI), with truncated ACME type II located downstream of SCCmec. An identical nucleotide sequence of ACME-SCCmec-CI was found in two distinct MRSA lineages (t064-ST8 and t002-ST5), which has not been reported previously inS. aureus.

2016 ◽  
Vol 60 (5) ◽  
pp. 3119-3122 ◽  
Author(s):  
Noriko Urushibara ◽  
Mitsuyo Kawaguchiya ◽  
Mayumi Onishi ◽  
Keiji Mise ◽  
Meiji Soe Aung ◽  
...  

ABSTRACTTwenty-two of 1,103 methicillin-resistantStaphylococcus aureus(MRSA) isolates containing the type II staphylococcal cassette chromosomemecelement (SCCmec) (collected in Hokkaido, Japan, from 2008 to 2011) harbored the arginine catabolic mobile element (ACME). Five genetic variations were identified in the ACME-staphylococcal cassette chromosomemeccomposite islands, 66 to 79 kb in size. The percentage of ACME carriage temporally increased from 0.85% to 4.5% in parallel with the emergence of shorter variants (66 to 72 kb). Shorter variants may have a selective advantage and accelerate the dissemination of ACME in Japanese MRSA.


2011 ◽  
Vol 55 (5) ◽  
pp. 1896-1905 ◽  
Author(s):  
Anna C. Shore ◽  
Angela S. Rossney ◽  
Orla M. Brennan ◽  
Peter M. Kinnevey ◽  
Hilary Humphreys ◽  
...  

ABSTRACTThe arginine catabolic mobile element (ACME) is prevalent among methicillin-resistantStaphylococcus aureus(MRSA) isolates of sequence type 8 (ST8) and staphylococcal chromosomal cassettemec(SCCmec) type IVa (USA300) (ST8-MRSA-IVa isolates), and evidence suggests that ACME enhances the ability of ST8-MRSA-IVa to grow and survive on its host. ACME has been identified in a small number of isolates belonging to other MRSA clones but is widespread among coagulase-negative staphylococci (CoNS). This study reports the first description of ACME in two distinct strains of the pandemic ST22-MRSA-IV clone. A total of 238 MRSA isolates recovered in Ireland between 1971 and 2008 were investigated for ACME using a DNA microarray. Twenty-three isolates (9.7%) were ACME positive, and all were either MRSA genotype ST8-MRSA-IVa (7/23, 30%) or MRSA genotype ST22-MRSA-IV (16/23, 70%). Whole-genome sequencing and comprehensive molecular characterization revealed the presence of a novel 46-kb ACME and staphylococcal chromosomal cassettemec(SCCmec) composite island (ACME/SCCmec-CI) in ST22-MRSA-IVh isolates (n= 15). This ACME/SCCmec-CI consists of a 12-kb DNA region previously identified in ACME type II inS. epidermidisATCC 12228, a truncated copy of the J1 region of SCCmectype I, and a complete SCCmectype IVh element. The composite island has a novel genetic organization, with ACME located withinorfXand SCCmeclocated downstream of ACME. One PVL locus-positive ST22-MRSA-IVa isolate carried ACME located downstream of SCCmectype IVa, as previously described in ST8-MRSA-IVa. These results suggest that ACME has been acquired by ST22-MRSA-IV on two independent occasions. At least one of these instances may have involved horizontal transfer and recombination events between MRSA and CoNS. The presence of ACME may enhance dissemination of ST22-MRSA-IV, an already successful MRSA clone.


2012 ◽  
Vol 57 (3) ◽  
pp. 1524-1528 ◽  
Author(s):  
Ewan M. Harrison ◽  
Gavin K. Paterson ◽  
Matthew T. G. Holden ◽  
Fiona J. E. Morgan ◽  
Anders Rhod Larsen ◽  
...  

ABSTRACTRecently, a novel variant ofmecAknown asmecC(mecALGA251) was identified inStaphylococcus aureusisolates from both humans and animals. In this study, we identified aStaphylococcus xylosusisolate that harbors a new allotype of themecCgene,mecC1. Whole-genome sequencing revealed thatmecC1forms part of a class Emeccomplex (mecI-mecR1-mecC1-blaZ) located at theorfXlocus as part of a likely staphylococcal cassette chromosomemecelement (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec.


2013 ◽  
Vol 57 (12) ◽  
pp. 6354-6357 ◽  
Author(s):  
P. Martins Simões ◽  
J.-P. Rasigade ◽  
H. Lemriss ◽  
M. Butin ◽  
C. Ginevra ◽  
...  

ABSTRACTMultiresistantStaphylococcus capitispulsotype NRCS-A has been reported to be a major pathogen causing nosocomial bacteremia in preterm infants. We report that the NRCS-A strain CR01 harbors a novel 60.9-kb composite staphylococcal cassette chromosomemec(SCCmec) element, composed of an SCCmecwith strong homologies toStaphylococcus aureusST398 SCCmecand of an SCCcad/ars/copharboring resistance genes for cadmium, arsenic, and copper. Whole-genome-based comparisons of publishedS. capitisstrains suggest that strain CR01 acquired the two elements independently.


2015 ◽  
Vol 59 (6) ◽  
pp. 3669-3671 ◽  
Author(s):  
Jia Chang Cai ◽  
Yan Yan Hu ◽  
Hong Wei Zhou ◽  
Gong-Xiang Chen ◽  
Rong Zhang

ABSTRACTSixcfr-harboring methicillin-resistantStaphylococcus aureus(MRSA) isolates, which belonged to the same clone of sequence type 5 (ST5)-staphylococcal cassette chromosomemecelement II (SCCmecII)-spat311, were investigated in this study. Complete sequencing of acfr-carrying plasmid, pLRSA417, revealed an 8,487-bp fragment containing a Tn4001-like transposon,cfr,orf1, and ISEnfa4. This segment, first identified in an animal plasmid, pSS-01, was observed in several plasmids from clinical coagulase-negative staphylococci in China, suggesting that thecfrgene, which might originate from livestock, was located in the same mobile element and disseminated among different clinical staphylococcal species.


mBio ◽  
2013 ◽  
Vol 4 (6) ◽  
Author(s):  
Paul J. Planet ◽  
Samuel J. LaRussa ◽  
Ali Dana ◽  
Hannah Smith ◽  
Amy Xu ◽  
...  

ABSTRACTThe arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistantStaphylococcus aureus(MRSA) from otherS. aureusstrains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus inStaphylococcus epidermidisand then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene,speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely relatedS. aureusstrains.speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone.IMPORTANCEOver the past 15 years, methicillin-resistantStaphylococcus aureus(MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulentS. aureusstrains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allowsS. aureusto evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells.


2019 ◽  
Vol 63 (8) ◽  
Author(s):  
Richard V. Goering ◽  
Erin A. Swartzendruber ◽  
Anne E. Obradovich ◽  
Isabella A. Tickler ◽  
Fred C. Tenover

ABSTRACT Staphylococcus aureus strains that possess a mecA gene but are phenotypically susceptible to oxacillin and cefoxitin (OS-MRSA) have been recognized for over a decade and are a challenge for diagnostic laboratories. The mechanisms underlying the discrepancy vary from isolate to isolate. We characterized seven OS-MRSA clinical isolates of six different spa types from six different states by whole-genome sequencing to identify the nucleotide sequence changes leading to the OS-MRSA phenotype. The results demonstrated that oxacillin susceptibility was associated with mutations in regions of nucleotide repeats within mecA. Subinhibitory antibiotic exposure selected for secondary mecA mutations that restored oxacillin resistance. Thus, strains of S. aureus that contain mecA but are phenotypically susceptible can become resistant after antibiotic exposure, which may result in treatment failure. OS-MRSA warrant follow-up susceptibility testing to ensure detection of resistant revertants.


2012 ◽  
Vol 56 (6) ◽  
pp. 3380-3383 ◽  
Author(s):  
B. A. Espedido ◽  
J. A. Steen ◽  
T. Barbagiannakos ◽  
J. Mercer ◽  
D. L. Paterson ◽  
...  

ABSTRACTApproximately 39% of methicillin-resistantStaphylococcus aureus(MRSA) sequence type 239 (ST239)-like bloodstream isolates from Liverpool Hospital (obtained between 1997 and 2008) carry an arginine catabolic mobile element (ACME). Whole-genome sequencing revealed that an ACME II variant is located betweenorfXand SCCmecIII, and based on pulsed-field gel electrophoresis patterns and temporal relationships of all ST239-like isolates (n= 360), ACME carriage may have contributed to subpulsotype strain replacement.


2017 ◽  
Vol 5 (35) ◽  
Author(s):  
Junzo Hisatsune ◽  
Hideharu Hagiya ◽  
Sumiko Shiota ◽  
Motoyuki Sugai

ABSTRACT Staphylococcus aureus JH4899, a community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) isolate collected from a patient with systematically disseminated infection, is classified as sequence type 8 and carries the staphylococcal cassette chromosome mec type IVl (SCCmecIVl). It produces TSST-1, SEC, a newly discovered enterotoxin (SE1), and epidermal cell differentiation inhibitor A (EDIN-A). Here, we present the complete genome sequence of the chromosome and a plasmid harboring the se1 and ednA genes.


Sign in / Sign up

Export Citation Format

Share Document