complete sequencing
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 14)

H-INDEX

38
(FIVE YEARS 1)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0248610
Author(s):  
Mauro Lúcio Ferreira Souza Junior ◽  
Jaime Viana de Sousa ◽  
João Farias Guerreiro

Single nucleotide polymorphisms (SNPs) in the first intron of the FTO gene reported in 2007 continue to be the known variants with the greatest effect on adiposity in different human populations. Coding variants in the FTO gene, on the other hand, have been little explored, although data from complete sequencing of the exomes of various populations are available in public databases and provide an excellent opportunity to investigate potential functional variants in FTO. In this context, this study aimed to track nonsynonymous variants in the exons of the FTO gene in different population groups employing the gnomAD database and analyze the potential functional impact of these variants on the FTO protein using five publicly available pathogenicity prediction programs. The findings revealed 345 rare mutations, of which 321 are missense (93%), 19 are stop gained (5.6%) and five mutations are located in the splice region (1.4%). Of these, 134 (38.8%) were classified as pathogenic, 144 (41.7%) as benign and 67 (19.5%) as unknown. The available data, however, suggest that these variants are probably not associated with BMI and obesity, but instead, with other diseases. Functional studies are, therefore, required to identify the role of these variants in disease genesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Flavia Soledad Darqui ◽  
Laura Mabel Radonic ◽  
Valeria Cecilia Beracochea ◽  
H. Esteban Hopp ◽  
Marisa López Bilbao

The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.


2021 ◽  
Vol 22 (23) ◽  
pp. 12723
Author(s):  
Mari Gogniashvili ◽  
Yoshihiro Matsuoka ◽  
Tengiz Beridze

The aim of the presented study is a genetic characterization of the hexaploid wheat Triticum aestivum L. Two approaches were used for the genealogical study of hexaploid wheats—the complete sequencing of chloroplast DNA and PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth-exon region of Wknox1b. The complete chloroplast DNA sequences of 13 hexaploid wheat samples were determined: Free-threshing—T. aestivum subsp. aestivum, one sample; T. aestivum subsp. compactum, two samples; T. aestivum subsp. sphaerococcum, one sample; T. aestivum subsp. carthlicoides, four samples. Hulled—T. aestivum subsp. spelta, three samples; T. aestivum subsp. vavilovii jakubz., two samples. The comparative analysis of complete cpDNA sequences of 20 hexaploid wheat samples (13 samples in this article plus 7 samples sequenced in this laboratory in 2018) was carried out. PCR-based haplotype analysis of the fourth intron of Wknox1d and of the fifth-to-sixth exon region of Wknox1b of all 20 hexaploid wheat samples was carried out. The 20 hexaploid wheat samples (13 samples in this article plus 7 samples in 2018) can be divided into two groups—T. aestivum subsp. spelta, three samples and T. aestivum subsp. vavilovii collected in Armenia, and the remaining 16 samples, including T. aestivum subsp. vavilovii collected in Europe (Sweden). If we take the cpDNA of Chinese Spring as a reference, 25 SNPs can be identified. Furthermore, 13–14 SNPs can be identified in T. aestivum subsp. spelta and subsp. vavilovii (Vav1). In the other samples up to 11 SNPs were detected. 22 SNPs are found in the intergenic regions, 2 found in introns, and 10 SNPs were found in the genes, of which seven are synonymous. PCR-based haplotype analysis of the fourth intron of Wknox1d and the fifth-to-sixth-exon region of Wknox1b provides an opportunity to make an assumption that hexaploid wheats T. aestivum subsp. macha var. palaeocolchicum and var. letshckumicum differ from other macha samples by the absence of a 42 bp insertion in the fourth intron of Wknox1d. One possible explanation for this observation would be that two Aegilops tauschii Coss. (A) and (B) participated in the formation of hexaploids through the D genome: Ae. tauschii (A)—macha (1–5, 7, 8, 10–12), and Ae. tauschii (B)—macha M6, M9, T. aestivum subsp. aestivum cv. ‘Chinese Spring’ and cv. ‘Red Doly’.


2021 ◽  
Author(s):  
Eleni Adam ◽  
Desh Ranjan ◽  
Harold Riethman

Abstract Background Human subtelomeric DNA regulates the length and stability of adjacent telomeres that are critical for cellular function, and contains many gene/pseudogene families. Large evolutionarily recent segmental duplications and associated structural variation in human subtelomeres has made complete sequencing and assembly of these regions difficult to impossible for many loci, complicating or precluding a wide range of genetic analyses to investigate their function. Results We present a hybrid assembly method, NanoPore Guided REgional Assembly Tool (NPGREAT), which combines Linked-Read data with ultralong nanopore reads spanning subtelomeric segmental duplications to potentially overcome these difficulties. Linked-Read sets identified by matches with 1-copy subtelomere sequence adjacent to segmental duplications are assembled and extended into the segmental duplication regions using Regional Extension of Assemblies using Linked-Reads (REXTAL). Telomere-containing ultralong nanopore reads are then used to provide contiguity and correct orientation for matching REXTAL sequence contigs as well as identification/correction of any misassemblies (associated primarily with tandem repeats). While we focus on subtelomeres, the method is generally applicable to assembly of segmental duplications and other complex genome regions. Our method was tested for a subset of representative subtelomeres with ultralong nanopore read coverage in GM12878. 10X Linked-Read datasets with high depth of coverage and a TELL-seq Linked-Read dataset with lower depth of coverage were each combined with the ultralong nanopore reads from the same genome to provide improved assemblies. Tandem repeat regions of the short-read assemblies, which are especially prone to misassembly due to collapse of matching tandemly repeated reads, were readily identified and properly sized by comparison with the nanopore reads. Conclusion The NPGREAT method resulted in extension of high-quality assemblies into otherwise inaccessible segmental duplication regions near telomeres, enhancing our ability to accurately assemble human subtelomere DNA. This information will enable improved analyses of the structure, function, and evolution of these key regions.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1759
Author(s):  
Emilie Krafft ◽  
Solène Denolly ◽  
Bertrand Boson ◽  
Sophie Angelloz-Pessey ◽  
Sophie Levaltier ◽  
...  

Despite the probable zoonotic origin of SARS-CoV-2, only limited research efforts have been made to understand the role of companion animals in SARS-CoV-2 epidemiology. According to recent serological prevalence studies, human-to-companion animal transmission is quite frequent, which led us to consider that the risk of SARS-CoV-2 transmission from animal to human, albeit negligible in the present context, may have been underestimated. In this study, we provide the results of a prospective survey that was conducted to evaluate the SARS-CoV-2 isolation rate by qRT-PCR in dogs and cats with different exposure risks and clinical statuses. From April 2020 to April 2021, we analyzed 367 samples and investigated the presence of SARS-CoV-2 RNA using qRT-PCR. Only four animals tested positive, all of them being cats. Three cats were asymptomatic and one presented a coryza-like syndrome. We describe in detail the infection in two cats and the associated clinical characteristics. Importantly, we obtained SARS-CoV-2 genomes from one infected animal and characterized them as Alpha variants. This represents the first identification of the SARS-CoV-2 Alpha variant in an infected animal in France.


2021 ◽  
Author(s):  
Keissy Karoline Pinheiro Miranda ◽  
Glennda Juscely Pereira Galvão ◽  
Pedro Arthur da Silva Araújo ◽  
Ana Claudia da Silva Ribeiro ◽  
Poliana da Silva Lemos ◽  
...  

Abstract A new virus, named Mutum virus, of the Family Tymoviridae was isolated from mosquitoes (Mansonia spp.). This virus was isolated in clone C6/36 cells. After complete sequencing, it presented a genome with 6,494 nt. The isolated virus is phylogenetically more related to two viruses isolated from Culex spp. mosquitoes: Ek Balam virus, isolated from Mexico, and Culex-originated Tymoviridae-like virus, isolated from China. Owing to the similarity of the protein coding domains, genomic organization, and phylogenetic analysis, we suggest that this virus belongs to a new genus, family Tymoviridae


2021 ◽  
Vol 11 (16) ◽  
pp. 7302
Author(s):  
Alessandra Di Canito ◽  
Roberto Foschino ◽  
Martina Mazzieri ◽  
Ileana Vigentini

The Brettanomyces bruxellensis species plays various roles in both the industrial and food sectors. At the biotechnological level, B. bruxellensis is considered to be a promising species for biofuel production. Its presence in alcoholic beverages can be detrimental or beneficial to the final product; B. bruxellensis can contribute to spoilage of wine and beer, but can also produce good aromas. However, little is known about its genetic characteristics and, despite the complete sequencing of several B. bruxellensis genomes and knowledge of its metabolic pathways, the toolkits for its efficient and easy genetic modification are still underdeveloped. Moreover, the different ploidy states and the high level of genotype diversity within this species makes the development of effective genetic manipulation tools challenging. This review summarizes the available tools for the genetic manipulation of B. bruxellensis and how they may be employed to improve the quality of wine and beer.


Brain ◽  
2021 ◽  
Author(s):  
Takeshi Mizuguchi ◽  
Tomoko Toyota ◽  
Satoko Miyatake ◽  
Satomi Mitsuhashi ◽  
Hiroshi Doi ◽  
...  

2021 ◽  
Author(s):  
Xingyi Yang ◽  
Zhonghao Yu ◽  
Shuanglin Li ◽  
Manling Huang ◽  
Song Cai ◽  
...  

Abstract Background: To explore a technical method to distinguish similar Y-STR haplotypes and its value in deducing the differentiation the males in paternal line, we used a complete genome sequence of Y chromosome using streptavidin–biotin magnetic particle-based capture methodology (Y chromosome liquid phase probe capture next generation sequencing technique (NGS)) to detect male individuals with similar Y-STR haplotypes. Based on our independently developed mathematical model and the new topological structure of Y chromosome mutation sites as well as haplogroups and pedigree trees updated by the International Society of Genealogy (ISOGG) every year, we distinguished the coancestry of male individuals with similar Y-STR haplotypes and Results: Identifying differences between the judgment results of Y full sequencing and the pedigree survey results allowed for the estimation whether the individuals have close relation within 3~5 generations or not. Y chromosome liquid phase probe capture NGS technique could capture the 16M region and effectively analyze tens of thousands of Y-SNP loci. Among them, the coancestry obtained by analysis of 8 sample cases was consistent with the actual total case time obtained by family investigation. Conclusions: Detecting the Y-STR haplotype similarity between male individuals and conducting the previously reported mathematical model analysis by using Y chromosome liquid phase probe capture NGS technology can uncover the coancestry of the different male individuals. These results provide the foundation for further investigation of the similar Y-STR haplotype males in the Y-STR database.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ki Wook Kim ◽  
Ira W. Deveson ◽  
Chi Nam I. Pang ◽  
Malinna Yeang ◽  
Zin Naing ◽  
...  

AbstractAccumulating evidence supports the high prevalence of co-infections among Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) patients, and their potential to worsen the clinical outcome of COVID-19. However, there are few data on Southern Hemisphere populations, and most studies to date have investigated a narrow spectrum of viruses using targeted qRT-PCR. Here we assessed respiratory viral co-infections among SARS-CoV-2 patients in Australia, through respiratory virome characterization. Nasopharyngeal swabs of 92 SARS-CoV-2-positive cases were sequenced using pan-viral hybrid-capture and the Twist Respiratory Virus Panel. In total, 8% of cases were co-infected, with rhinovirus (6%) or influenzavirus (2%). Twist capture also achieved near-complete sequencing (> 90% coverage, > tenfold depth) of the SARS-CoV-2 genome in 95% of specimens with Ct < 30. Our results highlight the importance of assessing all pathogens in symptomatic patients, and the dual-functionality of Twist hybrid-capture, for SARS-CoV-2 whole-genome sequencing without amplicon generation and the simultaneous identification of viral co-infections with ease.


Sign in / Sign up

Export Citation Format

Share Document