scholarly journals Modeling Prevention of Malaria and Selection of Drug Resistance with Different Dosing Schedules of Dihydroartemisinin-Piperaquine Preventive Therapy during Pregnancy in Uganda

2018 ◽  
Vol 63 (2) ◽  
pp. e01393-18
Author(s):  
Erika Wallender ◽  
Nan Zhang ◽  
Melissa Conrad ◽  
Abel Kakuru ◽  
Mary Muhindo ◽  
...  

ABSTRACT Dihydroartemisinin-piperaquine (DHA-PQ) is under study for intermittent preventive treatment during pregnancy (IPTp), but it may accelerate selection for drug resistance. Understanding the relationships between piperaquine concentration, prevention of parasitemia, and selection for decreased drug sensitivity can inform control policies and optimization of DHA-PQ dosing. Piperaquine concentrations, measures of parasitemia, and Plasmodium falciparum genotypes associated with decreased aminoquinoline sensitivity in Africa (pfmdr1 86Y, pfcrt 76T) were obtained from pregnant Ugandan women randomized to IPTp with sulfadoxine-pyrimethamine (SP) or DHA-PQ. Joint pharmacokinetic/pharmacodynamic models described relationships between piperaquine concentration and the probability of genotypes of interest using nonlinear mixed effects modeling. An increase in the piperaquine plasma concentration was associated with a log-linear decrease in risk of parasitemia. Our models predicted that higher median piperaquine concentrations would be required to provide 99% protection against mutant infections than against wild-type infections (pfmdr1: N86, 9.6 ng/ml; 86Y, 19.6 ng/ml; pfcrt: K76, 6.5 ng/ml; 76T, 19.6 ng/ml). Comparing monthly, weekly, and daily dosing, daily low-dose DHA-PQ was predicted to result in the fewest infections and the fewest mutant infections per 1,000 pregnancies (predicted mutant infections for pfmdr1 86Y: SP monthly, 607; DHA-PQ monthly, 198; DHA-PQ daily, 1; for pfcrt 76T: SP monthly, 1,564; DHA-PQ monthly, 283; DHA-PQ daily, 1). Our models predict that higher piperaquine concentrations are needed to prevent infections with the pfmdr1/pfcrt mutant compared to those with wild-type parasites and that, despite selection for mutants by DHA-PQ, the overall burden of mutant infections is lower for IPTp with DHA-PQ than for IPTp with SP. (This study has been registered at ClinicalTrials.gov under identifier NCT02282293.)

2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Patience Nayebare ◽  
Victor Asua ◽  
Melissa D. Conrad ◽  
Richard Kajubi ◽  
Abel Kakuru ◽  
...  

ABSTRACT Intermittent preventive treatment in pregnancy (IPTp) with monthly sulfadoxine-pyrimethamine (SP) is recommended for malaria-endemic parts of Africa, but efficacy is compromised by resistance, and, in recent trials, dihydroartemisinin-piperaquine (DP) has shown better antimalarial protective efficacy. We utilized blood samples from a recent trial to evaluate selection by IPTp with DP or SP of Plasmodium falciparum genetic polymorphisms that alter susceptibility to these drugs. The prevalence of known genetic polymorphisms associated with altered drug susceptibility was determined in parasitemic samples, including 375 collected before IPTp drugs were administered, 125 randomly selected from those receiving SP, and 80 from those receiving DP. For women receiving DP, the prevalence of mixed/mutant sequences was greater in samples collected during IPTp than that in samples collected prior to the intervention for PfMDR1 N86Y (20.3% versus 3.9%; P < 0.001), PfMDR1 Y184F (73.0% versus 53.0%; P < 0.001), and PfCRT K76T (46.4% versus 24.0%; P < 0.001). Considering SP, prior to IPTp, the prevalence of all 5 common antifolate mutations was over 92%, and this prevalence increased following exposure to SP, although none of these changes were statistically significant. For two additional mutations associated with high-level SP resistance, the prevalence of PfDHFR 164L (13.7% versus 4.0%; P = 0.004), but not PfDHPS 581G (1.9% versus 3.0%; P = 0.74), was greater in samples collected during IPTp compared to those collected before the intervention. Use of IPTp in Uganda selected for parasites with mutations associated with decreased susceptibility to IPTp regimens. Thus, a potential drawback of IPTp is selection of parasites with decreased drug susceptibility.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Bernard Tornyigah ◽  
Romain Coppée ◽  
Pascal Houze ◽  
Kwadwo A. Kusi ◽  
Bright Adu ◽  
...  

ABSTRACT The continuous spread of antimalarial drug resistance is a threat to current chemotherapy efficacy. Therefore, characterizing the genetic diversity of drug resistance markers is needed to follow treatment effectiveness and further update control strategies. Here, we genotyped Plasmodium falciparum resistance gene markers associated with sulfadoxine-pyrimethamine (SP) and artemisinin-based combination therapy (ACT) in isolates from pregnant women in Ghana. The prevalence of the septuple IRNI-A/FGKGS/T pfdhfr/pfdhps haplotypes, including the pfdhps A581G and A613S/T mutations, was high at delivery among post-SP treatment isolates (18.2%) compared to those of first antenatal care (before initiation of intermittent preventive treatment of malaria in pregnancy with sulfadoxine-pyrimethamine [IPTp-SP]; 6.1%; P = 0.03). Regarding the pfk13 marker gene, two nonsynonymous mutations (N458D and A481C) were detected at positions previously related to artemisinin resistance in isolates from Southeast Asia. These mutations were predicted in silico to alter the stability of the pfk13 propeller-encoding domain. Overall, these findings highlight the need for intensified monitoring and surveillance of additional mutations associated with increased SP resistance as well as emergence of resistance against artemisinin derivatives.


2015 ◽  
Vol 370 (1670) ◽  
pp. 20140306 ◽  
Author(s):  
Amber Kunkel ◽  
Caroline Colijn ◽  
Marc Lipsitch ◽  
Ted Cohen

Various forms of preventive and prophylactic antimicrobial therapies have been proposed to combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy) and malaria (e.g. intermittent preventive treatment). However, the potential population-level effects of preventative therapy (PT) on the prevalence of drug resistance are not well understood. PT can directly affect the rate at which resistance is acquired among those receiving PT. It can also indirectly affect resistance by altering the rate at which resistance is acquired through treatment for active disease and by modifying the level of competition between transmission of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to explore the ways in which PT can affect the long-term prevalence of drug resistance. Depending on the relative contributions of these three mechanisms, we find that increasing the level of coverage of PT may result in increases, decreases or non-monotonic changes in the overall prevalence of drug resistance. These results demonstrate the complexity of the relationship between PT and drug resistance in the population. Care should be taken when predicting population-level changes in drug resistance from small pilot studies of PT or estimates based solely on its direct effects.


2014 ◽  
Vol 58 (10) ◽  
pp. 6024-6031 ◽  
Author(s):  
Brian D. VanScoy ◽  
Rodrigo E. Mendes ◽  
Mariana Castanheira ◽  
Jennifer McCauley ◽  
Sujata M. Bhavnani ◽  
...  

ABSTRACTIt is important to understand the relationship between antibiotic exposure and the selection of drug resistance in the context of therapy exposure. We sought to identify the ceftolozane-tazobactam exposure necessary to prevent the amplification of drug-resistant bacterial subpopulations in a hollow-fiber infection model. TwoPseudomonas aeruginosachallenge isolates were selected for study, a wild-type ATCC strain (ceftolozane-tazobactam MIC, 0.5 mg/liter) and a clinical isolate (ceftolozane-tazobactam MIC, 4 mg/liter). The experiment duration was 10 days, and the ceftolozane-tazobactam dose ratio (2:1) and dosing interval (every 8 h) were selected to approximate those expected to be used clinically. The studied ceftolozane-tazobactam dosing regimens ranged from 62.5/31.25 to 2,000/1,000 mg per dose in step fold dilutions. Negative-control arms included no treatment and tazobactam at 500 mg every 8 h. Positive-control arms included ceftolozane at 1 g every 8 h and piperacillin-tazobactam dosed at 4.5 g every 6 h. For the wild-type ATCC strain, resistance was not selected by any ceftolozane-tazobactam regimen evaluated. For the clinical isolate, an inverted-U-shaped function best described the relationship between the amplification of a drug-resistant subpopulation and drug exposure. The least (62.5/31.25 mg) and most (2,000/1,000 mg) intensive ceftolozane-tazobactam dosing regimens did not select for drug resistance. Drug resistance selection was observed with intermediately intensive dosing regimens (125/62.5 through 1,000/500 mg). For the intermediately intensive ceftolozane-tazobactam dosing regimens, the duration until the selection for drug resistance increased with dose regimen intensity. These data support the selection of ceftolozane-tazobactam dosing regimens that minimize the potential for on-therapy drug resistance selection.


2015 ◽  
Vol 59 (7) ◽  
pp. 3995-4002 ◽  
Author(s):  
Naomi W. Lucchi ◽  
Sheila Akinyi Okoth ◽  
Franklin Komino ◽  
Philip Onyona ◽  
Ira F. Goldman ◽  
...  

ABSTRACTThe molecular basis of sulfadoxine-pyrimethamine (SP) resistance lies in a combination of single-nucleotide polymorphisms (SNPs) in two genes coding forPlasmodium falciparumdihydrofolate reductase (Pfdhfr) andP. falciparumdihydropteroate synthase (Pfdhps), targeted by pyrimethamine and sulfadoxine, respectively. The continued use of SP for intermittent preventive treatment in pregnant women in many African countries, despite SP's discontinuation as a first-line antimalarial treatment option due to high levels of drug resistance, may further increase the prevalence of SP-resistant parasites and/or lead to the selection of new mutations. An antimalarial drug resistance surveillance study was conducted in western Kenya between 2010 and 2013. A total of 203 clinical samples from children with uncomplicated malaria were genotyped for SNPs associated with SP resistance. The prevalence of the triple-mutantPfdhfrC50I51R59N108I164genotype and the double-mutantPfdhpsS436G437E540A581A613genotype was high. Two triple-mutantPfdhpsgenotypes, S436G437E540G581A613andH436G437E540A581A613, were found, with the latter thus far being uniquely found in western Kenya. The prevalence of the S436G437E540G581A613genotype was low. However, a steady increase in the prevalence of thePfdhpstriple-mutantH436G437E540A581A613genotype has been observed since its appearance in early 2000. Isolates with these genotypes shared substantial microsatellite haplotypes with the most common double-mutant allele, suggesting that this triple-mutant allele may have evolved locally. Overall, these findings show that the prevalence of theH436G437E540A581A613triple mutant may be increasing in this population and could compromise the efficacy of SP for intermittent preventive treatment in pregnant women if it increases the resistance threshold further.


2013 ◽  
Vol 57 (9) ◽  
pp. 4245-4251 ◽  
Author(s):  
Edwin Ochong ◽  
Patrick K. Tumwebaze ◽  
Oswald Byaruhanga ◽  
Bryan Greenhouse ◽  
Philip J. Rosenthal

ABSTRACTPolymorphisms in thePlasmodium falciparummultidrug resistance 1 (pfmdr1) gene impact sensitivity to multiple antimalarials. In Africa, polymorphisms at N86Y and D1246Y are common and have various impacts on sensitivity to different drugs. To gain insight into the fitness consequences of these polymorphisms, we cultured parasites isolated from children with malaria in Tororo, Uganda, where the multiplicity of infection is high, and used pyrosequencing to follow polymorphism prevalences in culture over time. Of 71 cultures, parasites in 69 were successfully analyzed at N86Y and parasites in 68 were successfully analyzed at D1246Y over 3 to 36 days of culture. For position 86, the sequences of 39/69 (56.5%) parasites remained stable (>90% prevalence over 2 to 17 time points), with 82.1% of these being stable for the 86Y mutation. For position 1246, the sequences of 31/68 (45.6%) parasites remained stable, with 64.5% of these being stable for the wild-type D1246 sequence (P= 0.0002 for comparison of stable mutant genotypes for the two alleles). Defining allele selection as a ≥15% change in prevalence between the first and last samples assessed, for position 86, 11 samples showed selection, with selection toward 86Y occurring in 72.7% of alleles; for position 1246, 14 samples showed selection, with selection toward D1246 occurring in 64.3% of alleles (P= 0.11 for comparison of selection of mutations at the two alleles). Among the 7 samples with selection at both alleles, 5 showed selection for both 86Y and D1246. Overall, consistent trends in the direction of selection were seen, although differences were not statistically significant. Our results suggest fitness advantages for parasites with thepfmdr186Y mutation and wild-type D1246, highlighting the complex interplay between drug resistance and fitness in malaria parasites. (This study has been registered at ClinicalTrials.gov under registration no. NCT00948896 and NCT00993031.)


2016 ◽  
Vol 60 (10) ◽  
pp. 5649-5654 ◽  
Author(s):  
Joaniter I. Nankabirwa ◽  
Melissa D. Conrad ◽  
Jennifer Legac ◽  
Stephen Tukwasibwe ◽  
Patrick Tumwebaze ◽  
...  

ABSTRACTDihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact onPlasmodium falciparumdrug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed forP. falciparumparasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y inpfmdr1and K76T inpfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. Forpfmdr1N86Y andpfcrtK76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P= 0.03]; 76T, 96.0% versus 86.1% [P= 0.05]), suggesting selective pressure of DP. Full sequencing ofpfcrtin a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harborpfmdr1andpfcrtpolymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yağmur Demircan Yalçın ◽  
Taylan Berkin Töral ◽  
Sertan Sukas ◽  
Ender Yıldırım ◽  
Özge Zorlu ◽  
...  

AbstractWe report the development of a lab-on-a-chip system, that facilitates coupled dielectrophoretic detection (DEP-D) and impedimetric counting (IM-C), for investigating drug resistance in K562 and CCRF-CEM leukemia cells without (immuno) labeling. Two IM-C units were placed upstream and downstream of the DEP-D unit for enumeration, respectively, before and after the cells were treated in DEP-D unit, where the difference in cell count gave the total number of trapped cells based on their DEP characteristics. Conductivity of the running buffer was matched the conductivity of cytoplasm of wild type K562 and CCRF-CEM cells. Results showed that DEP responses of drug resistant and wild type K562 cells were statistically discriminative (at p = 0.05 level) at 200 mS/m buffer conductivity and at 8.6 MHz working frequency of DEP-D unit. For CCRF-CEM cells, conductivity and frequency values were 160 mS/m and 6.2 MHz, respectively. Our approach enabled discrimination of resistant cells in a group by setting up a threshold provided by the conductivity of running buffer. Subsequent selection of drug resistant cells can be applied to investigate variations in gene expressions and occurrence of mutations related to drug resistance.


Sign in / Sign up

Export Citation Format

Share Document