scholarly journals Activities of Fosfomycin, Tigecycline, Colistin, and Gentamicin against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Foreign-Body Infection Model

2013 ◽  
Vol 57 (3) ◽  
pp. 1421-1427 ◽  
Author(s):  
Stéphane Corvec ◽  
Ulrika Furustrand Tafin ◽  
Bertrand Betrisey ◽  
Olivier Borens ◽  
Andrej Trampuz

ABSTRACTLimited antimicrobial agents are available for the treatment of implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli. We compared the activities of fosfomycin, tigecycline, colistin, and gentamicin (alone and in combination) against a CTX-M15-producing strain ofEscherichia coli(Bj HDE-1)in vitroand in a foreign-body infection model. The MIC and the minimal bactericidal concentration in logarithmic phase (MBClog) and stationary phase (MBCstat) were 0.12, 0.12, and 8 μg/ml for fosfomycin, 0.25, 32, and 32 μg/ml for tigecycline, 0.25, 0.5, and 2 μg/ml for colistin, and 2, 8, and 16 μg/ml for gentamicin, respectively. In time-kill studies, colistin showed concentration-dependent activity, but regrowth occurred after 24 h. Fosfomycin demonstrated rapid bactericidal activity at the MIC, and no regrowth occurred. Synergistic activity between fosfomycin and colistinin vitrowas observed, with no detectable bacterial counts after 6 h. In animal studies, fosfomycin reduced planktonic counts by 4 log10CFU/ml, whereas in combination with colistin, tigecycline, or gentamicin, it reduced counts by >6 log10CFU/ml. Fosfomycin was the only single agent which was able to eradicateE. colibiofilms (cure rate, 17% of implanted, infected cages). In combination, colistin plus tigecycline (50%) and fosfomycin plus gentamicin (42%) cured significantly more infected cages than colistin plus gentamicin (33%) or fosfomycin plus tigecycline (25%) (P< 0.05). The combination of fosfomycin plus colistin showed the highest cure rate (67%), which was significantly better than that of fosfomycin alone (P< 0.05). In conclusion, the combination of fosfomycin plus colistin is a promising treatment option for implant-associated infections caused by fluoroquinolone-resistant Gram-negative bacilli.

2011 ◽  
Vol 55 (10) ◽  
pp. 4821-4827 ◽  
Author(s):  
Ulrika Furustrand Tafin ◽  
Ivana Majic ◽  
Cyrine Zalila Belkhodja ◽  
Bertrand Betrisey ◽  
Stéphane Corvec ◽  
...  

ABSTRACTFor enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) againstEnterococcus faecalis in vitroand in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection ofE. faecalisin the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively.In vitro, gentamicin at subinhibitory concentrations improved the activity againstE. faecaliswhen combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherentE. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicatingE. faecalisfrom implants already in the early stage of implant-associated infection.


2020 ◽  
Vol 65 (1) ◽  
pp. e01172-20 ◽  
Author(s):  
Yu-Feng Zhou ◽  
Ping Liu ◽  
Shu-He Dai ◽  
Jian Sun ◽  
Ya-Hong Liu ◽  
...  

ABSTRACTAlternative therapeutic options are urgently needed against multidrug-resistant Escherichia coli infections, especially in situations of preexisting tigecycline and colistin resistance. Here, we investigated synergistic activity of the antiretroviral drug zidovudine in combination with tigecycline or colistin against E. coli harboring tet(X) and mcr-1 in vitro and in a murine thigh infection model. Zidovudine and tigecycline/colistin combinations achieved synergistic killing and significantly decreased bacterial burdens by >2.5-log10 CFU/g in thigh tissues compared to each monotherapy.


2012 ◽  
Vol 56 (4) ◽  
pp. 1885-1891 ◽  
Author(s):  
Ulrika Furustrand Tafin ◽  
Stéphane Corvec ◽  
Bertrand Betrisey ◽  
Werner Zimmerli ◽  
Andrej Trampuz

ABSTRACTPropionibacterium acnesis an important cause of orthopedic-implant-associated infections, for which the optimal treatment has not yet been determined. We investigated the activity of rifampin, alone and in combination, against planktonic and biofilmP. acnes in vitroand in a foreign-body infection model. The MIC and the minimal bactericidal concentration (MBC) were 0.007 and 4 μg/ml for rifampin, 1 and 4 μg/ml for daptomycin, 1 and 8 μg/ml for vancomycin, 1 and 2 μg/ml for levofloxacin, 0.03 and 16 μg/ml for penicillin G, 0.125 and 512 μg/ml for clindamycin, and 0.25 and 32 μg/ml for ceftriaxone. TheP. acnesminimal biofilm eradication concentration (MBEC) was 16 μg/ml for rifampin; 32 μg/ml for penicillin G; 64 μg/ml for daptomycin and ceftriaxone; and ≥128 μg/ml for levofloxacin, vancomycin, and clindamycin. In the animal model, implants were infected by injection of 109CFUP. acnesin cages. Antimicrobial activity onP. acneswas investigated in the cage fluid (planktonic form) and on explanted cages (biofilm form). The cure rates were 4% for daptomycin, 17% for vancomycin, 0% for levofloxacin, and 36% for rifampin. Rifampin cured 63% of the infected cages in combination with daptomycin, 46% with vancomycin, and 25% with levofloxacin. While all tested antimicrobials showed good activity against planktonicP. acnes, for eradication of biofilms, rifampin was needed. In combination with rifampin, daptomycin showed higher cure rates than with vancomycin in this foreign-body infection model.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sun Hee Moon ◽  
Yihong Kaufmann ◽  
En Huang

ABSTRACT Polymyxin resistance mediated by the mcr-1 gene threatens the last-resort antibiotics. Linear lipopeptide paenipeptin analogues 1 and 15 disrupted the outer membrane of Gram-negative pathogens and potentiated clarithromycin and rifampin against mcr-1-positive Escherichia coli from the FDA-CDC Antimicrobial Resistance Isolate Bank. In the presence of paenipeptin, clarithromycin and rifampin resulted in over 3-log reduction of E. coli in vitro. Moreover, paenipeptin-antibiotic combinations significantly reduced E. coli in a murine thigh infection model.


2011 ◽  
Vol 56 (1) ◽  
pp. 544-549 ◽  
Author(s):  
Catharine C. Bulik ◽  
Pamela R. Tessier ◽  
Rebecca A. Keel ◽  
Christina A. Sutherland ◽  
David P. Nicolau

ABSTRACTCXA-101 is a novel antipseudomonal cephalosporin with enhanced activity against Gram-negative organisms displaying various resistance mechanisms. This study evaluates the efficacy of exposures approximating human percent free time above the MIC (%fT > MIC) of CXA-101 with or without tazobactam and piperacillin-tazobactam (TZP) against target Gram-negative organisms, including those expressing extended-spectrum β-lactamases (ESBLs). Sixteen clinical Gram-negative isolates (6Pseudomonas aeruginosaisolates [piperacillin-tazobactam MIC range, 8 to 64 μg/ml], 4Escherichia coliisolates (2 ESBL and 2 non-ESBL expressing), and 4Klebsiella pneumoniaeisolates (3 ESBL and 1 non-ESBL expressing) were used in an immunocompetent murine thigh infection model. After infection, groups of mice were administered doses of CXA-101 with or without tazobactam (2:1) designed to approximate the %fT > MIC observed in humans given 1 g of CXA-101 with or without tazobactam every 8 h as a 1-h infusion. As a comparison, groups of mice were administered piperacillin-tazobactam doses designed to approximate the %fT > MIC observed in humans given 4.5 g piperacillin-tazobactam every 6 h as a 30-min infusion. Predicted piperacillin-tazobactam %fT > MIC exposures of greater than 40% resulted in static to >1 log decreases in CFU in non-ESBL-expressing organisms with MICs of ≤32 μg/ml after 24 h of therapy. Predicted CXA-101 with or without tazobactam %fT > MIC exposures of ≥37.5% resulted in 1- to 3-log-unit decreases in CFU in non-ESBL-expressing organisms, with MICs of ≤16 μg/ml after 24 h of therapy. With regard to the ESBL-expressing organisms, the inhibitor combinations showed enhanced CFU decreases versus CXA-101 alone. Due to enhancedin vitropotency and resultant increasedin vivoexposure, CXA-101 produced statistically significant reductions in CFU in 9 isolates compared with piperacillin-tazobactam. The addition of tazobactam to CXA-101 produced significant reductions in CFU for 7 isolates compared with piperacillin-tazobactam. Overall, human simulated exposures of CXA-101 with or without tazobactam demonstrated improved efficacy versus piperacillin-tazobactam.


2015 ◽  
Vol 197 (11) ◽  
pp. 1873-1885 ◽  
Author(s):  
Aleksandr Sverzhinsky ◽  
Jacqueline W. Chung ◽  
Justin C. Deme ◽  
Lucien Fabre ◽  
Kristian T. Levey ◽  
...  

ABSTRACTIron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-taggedexbB-exbDand S-taggedtonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB fromEscherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB4-ExbD2complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB4-ExbD1-TonB1. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB4-ExbD1-TonB1. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization.IMPORTANCEReceptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstratein vitroevidence of ExbB4-ExbD1-TonB1complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.


2014 ◽  
Vol 82 (9) ◽  
pp. 3867-3879 ◽  
Author(s):  
Jiale Ma ◽  
Yinli Bao ◽  
Min Sun ◽  
Wenyang Dong ◽  
Zihao Pan ◽  
...  

ABSTRACTType VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenicEscherichia coli(APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucialclpVclusters of these two T6SS loci and theirvgrGgenes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines culturedin vitro, decreased pathogenicity in duck and mouse infection modelsin vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs.


2016 ◽  
Vol 60 (5) ◽  
pp. 3001-3006 ◽  
Author(s):  
Akihiro Morinaka ◽  
Yuko Tsutsumi ◽  
Keiko Yamada ◽  
Yoshihiro Takayama ◽  
Shiro Sakakibara ◽  
...  

ABSTRACTGram-negative bacteria are evolving to produce β-lactamases of increasing diversity that challenge antimicrobial chemotherapy. OP0595 is a new diazabicyclooctane serine β-lactamase inhibitor which acts also as an antibiotic and as a β-lactamase-independent β-lactam “enhancer” againstEnterobacteriaceae. Here we determined the optimal concentration of OP0595 in combination with piperacillin, cefepime, and meropenem, in addition to the antibacterial activity of OP0595 alone and in combination with cefepime, inin vitrotime-kill studies and anin vivoinfection model against five strains of CTX-M-15-positiveEscherichia coliand five strains of KPC-positiveKlebsiella pneumoniae. An OP0595 concentration of 4 μg/ml was found to be sufficient for an effective combination with all three β-lactam agents. In bothin vitrotime-kill studies and anin vivomodel of infection, cefepime-OP0595 showed stronger efficacy than cefepime alone against all β-lactamase-positive strains tested, whereas OP0595 alone showed weaker or no efficacy. Taken together, these data indicate that combinational use of OP0595 and a β-lactam agent is important to exert the antimicrobial functions of OP0595.


2013 ◽  
Vol 57 (7) ◽  
pp. 3293-3298 ◽  
Author(s):  
Zongping Xie ◽  
Xu Cui ◽  
Cunju Zhao ◽  
Wenhai Huang ◽  
Jianqiang Wang ◽  
...  

ABSTRACTThe treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillusEscherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluatedin vitroandin vivofor the treatment of osteomyelitis induced byEscherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Paul J. Converse ◽  
Deepak V. Almeida ◽  
Sandeep Tyagi ◽  
Jian Xu ◽  
Eric L. Nuermberger

ABSTRACT Buruli ulcer is treatable with antibiotics. An 8-week course of rifampin (RIF) and either streptomycin (STR) or clarithromycin (CLR) cures over 90% of patients. However, STR requires injections and may be toxic, and CLR shares an adverse drug-drug interaction with RIF and may be poorly tolerated. Studies in a mouse footpad infection model showed that increasing the dose of RIF or using the long-acting rifamycin rifapentine (RPT), in combination with clofazimine (CFZ), a relatively well-tolerated antibiotic, can shorten treatment to 4 weeks. CFZ is reduced by a component of the electron transport chain (ETC) to produce reactive oxygen species toxic to bacteria. Synergistic activity of CFZ with other ETC-targeting drugs, the ATP synthase inhibitor bedaquiline (BDQ) and the bc1:aa3 oxidase inhibitor Q203 (now named telacebec), was recently described against Mycobacterium tuberculosis. Recognizing that M. tuberculosis mutants lacking the alternative bd oxidase are hypersusceptible to Q203 and that Mycobacterium ulcerans is a natural bd oxidase-deficient mutant, we tested the in vitro susceptibility of M. ulcerans to Q203 and evaluated the treatment-shortening potential of novel 3- and 4-drug regimens combining RPT, CFZ, Q203, and/or BDQ in a mouse footpad model. The MIC of Q203 was extremely low (0.000075 to 0.00015 μg/ml). Footpad swelling decreased more rapidly in mice treated with Q203-containing regimens than in mice treated with RIF and STR (RIF+STR) and RPT and CFZ (RPT+CFZ). Nearly all footpads were culture negative after only 2 weeks of treatment with regimens containing RPT, CFZ, and Q203. No relapse was detected after only 2 weeks of treatment in mice treated with any of the Q203-containing regimens. In contrast, 15% of mice receiving RIF+STR for 4 weeks relapsed. We conclude that it may be possible to cure patients with Buruli ulcer in 14 days or less using Q203-containing regimens rather than currently recommended 56-day regimens.


Sign in / Sign up

Export Citation Format

Share Document